Answer :

Certainly! Let's solve the inequality [tex]\(5 \leq 2r - 3 < 11\)[/tex] step by step.

### Step 1: Break the compound inequality into two parts.

We have two parts to consider in our compound inequality:
1. [tex]\(5 \leq 2r - 3\)[/tex]
2. [tex]\(2r - 3 < 11\)[/tex]

### Step 2: Solve the first inequality [tex]\(5 \leq 2r - 3\)[/tex].

#### Step 2.1: Isolate the term with [tex]\(r\)[/tex].

Add 3 to both sides:
[tex]\[ 5 + 3 \leq 2r - 3 + 3 \][/tex]
This simplifies to:
[tex]\[ 8 \leq 2r \][/tex]

#### Step 2.2: Solve for [tex]\(r\)[/tex].

Divide both sides by 2:
[tex]\[ \frac{8}{2} \leq \frac{2r}{2} \][/tex]
This simplifies to:
[tex]\[ 4 \leq r \][/tex]

So, one part of the solution is:
[tex]\[ r \geq 4 \][/tex]

### Step 3: Solve the second inequality [tex]\(2r - 3 < 11\)[/tex].

#### Step 3.1: Isolate the term with [tex]\(r\)[/tex].

Add 3 to both sides:
[tex]\[ 2r - 3 + 3 < 11 + 3 \][/tex]
This simplifies to:
[tex]\[ 2r < 14 \][/tex]

#### Step 3.2: Solve for [tex]\(r\)[/tex].

Divide both sides by 2:
[tex]\[ \frac{2r}{2} < \frac{14}{2} \][/tex]
This simplifies to:
[tex]\[ r < 7 \][/tex]

So, the other part of the solution is:
[tex]\[ r < 7 \][/tex]

### Step 4: Combine the two parts of the solution.

From the above steps, we have:
1. [tex]\(r \geq 4\)[/tex]
2. [tex]\(r < 7\)[/tex]

Combining these, the solution to the compound inequality [tex]\(5 \leq 2r - 3 < 11\)[/tex] is:
[tex]\[ 4 \leq r < 7 \][/tex]

Therefore, the values of [tex]\(r\)[/tex] that satisfy the inequality [tex]\(5 \leq 2r - 3 < 11\)[/tex] are in the interval:
[tex]\[ [4, 7) \][/tex]

So, the complete solution to the inequality [tex]\(5 \leq 2r - 3 < 11\)[/tex] is:
[tex]\[ r \in [4, 7) \][/tex]