Select the correct answer.

Solve the system of equations given below.

[tex]\[
\begin{aligned}
y - 15 &= 3x \\
-2x + 5y &= -3
\end{aligned}
\][/tex]

A. [tex]\((-6, -3)\)[/tex]
B. [tex]\((-6, 3)\)[/tex]
C. [tex]\((-7, -6)\)[/tex]
D. [tex]\((-3, 6)\)[/tex]



Answer :

To solve the system of equations:
[tex]\[ \begin{aligned} y - 15 &= 3x \\ -2x + 5y &= -3 \end{aligned} \][/tex]

we can use the substitution method.

1. First, solve the first equation for [tex]\( y \)[/tex]:
[tex]\[ y - 15 = 3x \][/tex]
Add 15 to both sides:
[tex]\[ y = 3x + 15 \][/tex]

2. Substitute [tex]\( y = 3x + 15 \)[/tex] into the second equation:
[tex]\[ -2x + 5(3x + 15) = -3 \][/tex]

3. Simplify and solve for [tex]\( x \)[/tex]:
[tex]\[ -2x + 15x + 75 = -3 \][/tex]
Combine like terms:
[tex]\[ 13x + 75 = -3 \][/tex]
Subtract 75 from both sides:
[tex]\[ 13x = -3 - 75 \][/tex]
[tex]\[ 13x = -78 \][/tex]
Divide by 13:
[tex]\[ x = -6 \][/tex]

4. Substitute [tex]\( x = -6 \)[/tex] back into the expression for [tex]\( y \)[/tex]:
[tex]\[ y = 3(-6) + 15 \][/tex]
Simplify:
[tex]\[ y = -18 + 15 \][/tex]
[tex]\[ y = -3 \][/tex]

Therefore, the solution to the system of equations is [tex]\( x = -6 \)[/tex] and [tex]\( y = -3 \)[/tex]. The correct answer is:
[tex]\[ \boxed{(-6, -3)} \][/tex]

So, the correct choice is:
A. [tex]\((-6, -3)\)[/tex]