Sure! Let's solve for [tex]\( y \)[/tex] given that [tex]\( x = -14 \)[/tex] in the equation [tex]\( 6x + 3y = -60 \)[/tex].
1. Begin by substituting [tex]\( x \)[/tex] with [tex]\(-14\)[/tex] in the equation:
[tex]\[
6(-14) + 3y = -60
\][/tex]
2. Calculate [tex]\( 6 \times (-14) \)[/tex]:
[tex]\[
6 \times (-14) = -84
\][/tex]
3. Substitute [tex]\(-84\)[/tex] into the equation:
[tex]\[
-84 + 3y = -60
\][/tex]
4. To isolate [tex]\( 3y \)[/tex], add [tex]\( 84 \)[/tex] to both sides of the equation:
[tex]\[
-84 + 3y + 84 = -60 + 84
\][/tex]
Simplifying both sides, we get:
[tex]\[
3y = 24
\][/tex]
5. Solve for [tex]\( y \)[/tex] by dividing both sides by [tex]\( 3 \)[/tex]:
[tex]\[
y = \frac{24}{3}
\][/tex]
6. Simplify the result:
[tex]\[
y = 8
\][/tex]
Therefore, when [tex]\( x = -14 \)[/tex], the value of [tex]\( y \)[/tex] is [tex]\( 8 \)[/tex].