Complete the solution of the equation. Find the value of [tex]\( y \)[/tex] when [tex]\( x \)[/tex] equals 15.

[tex]\[ -x - 9y = 39 \][/tex]

When [tex]\( x = 15 \)[/tex]:

[tex]\[ -15 - 9y = 39 \][/tex]



Answer :

To find the value of [tex]\( y \)[/tex] when [tex]\( x \)[/tex] equals 15 in the equation [tex]\( -x - 9y = 39 \)[/tex], follow these steps:

1. Substitute [tex]\( x \)[/tex] with 15 in the equation:
[tex]\[ -15 - 9y = 39 \][/tex]

2. Combine like terms by adding 15 to both sides of the equation to isolate the term involving [tex]\( y \)[/tex] on one side:
[tex]\[ -15 + 15 - 9y = 39 + 15 \][/tex]
This simplifies to:
[tex]\[ -9y = 39 + 15 \][/tex]
Therefore,
[tex]\[ -9y = 54 \][/tex]

3. Solve for [tex]\( y \)[/tex] by dividing both sides of the equation by -9:
[tex]\[ y = \frac{54}{-9} \][/tex]

4. Simplify the fraction on the right-hand side:
[tex]\[ y = -6 \][/tex]

Hence, the value of [tex]\( y \)[/tex] when [tex]\( x \)[/tex] equals 15 is [tex]\( y = -6 \)[/tex].