Answer :
To find the value of [tex]\( y \)[/tex] when [tex]\( x \)[/tex] equals 15 in the equation [tex]\( -x - 9y = 39 \)[/tex], follow these steps:
1. Substitute [tex]\( x \)[/tex] with 15 in the equation:
[tex]\[ -15 - 9y = 39 \][/tex]
2. Combine like terms by adding 15 to both sides of the equation to isolate the term involving [tex]\( y \)[/tex] on one side:
[tex]\[ -15 + 15 - 9y = 39 + 15 \][/tex]
This simplifies to:
[tex]\[ -9y = 39 + 15 \][/tex]
Therefore,
[tex]\[ -9y = 54 \][/tex]
3. Solve for [tex]\( y \)[/tex] by dividing both sides of the equation by -9:
[tex]\[ y = \frac{54}{-9} \][/tex]
4. Simplify the fraction on the right-hand side:
[tex]\[ y = -6 \][/tex]
Hence, the value of [tex]\( y \)[/tex] when [tex]\( x \)[/tex] equals 15 is [tex]\( y = -6 \)[/tex].
1. Substitute [tex]\( x \)[/tex] with 15 in the equation:
[tex]\[ -15 - 9y = 39 \][/tex]
2. Combine like terms by adding 15 to both sides of the equation to isolate the term involving [tex]\( y \)[/tex] on one side:
[tex]\[ -15 + 15 - 9y = 39 + 15 \][/tex]
This simplifies to:
[tex]\[ -9y = 39 + 15 \][/tex]
Therefore,
[tex]\[ -9y = 54 \][/tex]
3. Solve for [tex]\( y \)[/tex] by dividing both sides of the equation by -9:
[tex]\[ y = \frac{54}{-9} \][/tex]
4. Simplify the fraction on the right-hand side:
[tex]\[ y = -6 \][/tex]
Hence, the value of [tex]\( y \)[/tex] when [tex]\( x \)[/tex] equals 15 is [tex]\( y = -6 \)[/tex].