Answer :
Certainly! Let's solve the expression step-by-step to make sure everything is clear. Here is the given expression:
[tex]\[ [3 \times (6 + 5) + (8 + 4) \times 2] - 50 \][/tex]
1. Calculate the sums inside the parentheses:
[tex]\[ 6 + 5 = 11 \][/tex]
[tex]\[ 8 + 4 = 12 \][/tex]
2. Substitute these values back into the expression:
[tex]\[ [3 \times 11 + 12 \times 2] - 50 \][/tex]
3. Perform the multiplications:
[tex]\[ 3 \times 11 = 33 \][/tex]
[tex]\[ 12 \times 2 = 24 \][/tex]
4. Add the results of the multiplications:
[tex]\[ 33 + 24 = 57 \][/tex]
5. Subtract 50 from the result of the addition:
[tex]\[ 57 - 50 = 7 \][/tex]
Therefore, the value of the expression [tex]\([3 \times (6 + 5) + (8 + 4) \times 2] - 50\)[/tex] is [tex]\( 7 \)[/tex].
[tex]\[ [3 \times (6 + 5) + (8 + 4) \times 2] - 50 \][/tex]
1. Calculate the sums inside the parentheses:
[tex]\[ 6 + 5 = 11 \][/tex]
[tex]\[ 8 + 4 = 12 \][/tex]
2. Substitute these values back into the expression:
[tex]\[ [3 \times 11 + 12 \times 2] - 50 \][/tex]
3. Perform the multiplications:
[tex]\[ 3 \times 11 = 33 \][/tex]
[tex]\[ 12 \times 2 = 24 \][/tex]
4. Add the results of the multiplications:
[tex]\[ 33 + 24 = 57 \][/tex]
5. Subtract 50 from the result of the addition:
[tex]\[ 57 - 50 = 7 \][/tex]
Therefore, the value of the expression [tex]\([3 \times (6 + 5) + (8 + 4) \times 2] - 50\)[/tex] is [tex]\( 7 \)[/tex].