To determine the domain of the given function, let's analyze the sets of ordered pairs provided:
The function is represented by the set of ordered pairs:
[tex]\[
\{(3, 4), (5, 8), (9, -4), (-2, 1), (0, 8)\}
\][/tex]
The domain of a function consists of all the first elements of these ordered pairs, since the domain is the set of all possible input values (or x-values).
So, we extract the first elements from each of the given pairs:
- From the pair [tex]\((3, 4)\)[/tex], the first element is [tex]\(3\)[/tex].
- From the pair [tex]\((5, 8)\)[/tex], the first element is [tex]\(5\)[/tex].
- From the pair [tex]\((9, -4)\)[/tex], the first element is [tex]\(9\)[/tex].
- From the pair [tex]\((-2, 1)\)[/tex], the first element is [tex]\(-2\)[/tex].
- From the pair [tex]\((0, 8)\)[/tex], the first element is [tex]\(0\)[/tex].
Thus, combining all these first elements, the domain is:
[tex]\[
\{3, 5, 9, -2, 0\}
\][/tex]
So the domain of the function is:
[tex]\[
\boxed{\{0, 3, 5, 9, -2\}}
\][/tex]