What is the domain of this function?

[tex]\[ \{(3,4), (5,8), (9,-4), (-2,1), (0,8)\} \][/tex]

A. [tex]\(\{3, 5, 9, -2, 0\}\)[/tex]

B. This does not represent a function.

C. [tex]\(\{4, 8, -4, 1, 8\}\)[/tex]

D. All real numbers.



Answer :

To determine the domain of the given function, let's analyze the sets of ordered pairs provided:

The function is represented by the set of ordered pairs:
[tex]\[ \{(3, 4), (5, 8), (9, -4), (-2, 1), (0, 8)\} \][/tex]

The domain of a function consists of all the first elements of these ordered pairs, since the domain is the set of all possible input values (or x-values).

So, we extract the first elements from each of the given pairs:
- From the pair [tex]\((3, 4)\)[/tex], the first element is [tex]\(3\)[/tex].
- From the pair [tex]\((5, 8)\)[/tex], the first element is [tex]\(5\)[/tex].
- From the pair [tex]\((9, -4)\)[/tex], the first element is [tex]\(9\)[/tex].
- From the pair [tex]\((-2, 1)\)[/tex], the first element is [tex]\(-2\)[/tex].
- From the pair [tex]\((0, 8)\)[/tex], the first element is [tex]\(0\)[/tex].

Thus, combining all these first elements, the domain is:
[tex]\[ \{3, 5, 9, -2, 0\} \][/tex]

So the domain of the function is:
[tex]\[ \boxed{\{0, 3, 5, 9, -2\}} \][/tex]