To determine the speed of sound at a temperature of [tex]\( 40^\circ \text{C} \)[/tex], we use the given formula:
[tex]\[ S = 0.6T + 331.5 \][/tex]
Here, [tex]\( S \)[/tex] represents the speed of sound in meters per second, and [tex]\( T \)[/tex] represents the temperature in degrees Celsius.
We are given [tex]\( T = 40 \)[/tex] degrees Celsius. Now, we substitute this value into the formula:
[tex]\[ S = 0.6 \times 40 + 331.5 \][/tex]
First, we calculate the product of [tex]\( 0.6 \)[/tex] and [tex]\( 40 \)[/tex]:
[tex]\[ 0.6 \times 40 = 24 \][/tex]
Next, we add this result to [tex]\( 331.5 \)[/tex]:
[tex]\[ 24 + 331.5 = 355.5 \][/tex]
Therefore, the speed of sound at [tex]\( 40^\circ \text{C} \)[/tex] is:
[tex]\[ S = 355.5 \, \text{meters per second} \][/tex]