Certainly! Let's simplify the expression [tex]\(2x(x-4) - 3(x+5)\)[/tex] step by step.
1. Distribute the terms inside the parentheses:
[tex]\[
2x(x-4) = 2x \cdot x - 2x \cdot 4 = 2x^2 - 8x
\][/tex]
Similarly,
[tex]\[
-3(x+5) = -3 \cdot x - 3 \cdot 5 = -3x - 15
\][/tex]
2. Combine these results into one expression:
[tex]\[
2x^2 - 8x - 3x - 15
\][/tex]
3. Now, combine the like terms:
[tex]\[
2x^2 - 8x - 3x - 15 = 2x^2 - 11x - 15
\][/tex]
The expression in its simplest form is:
[tex]\[
2x^2 - 11x - 15
\][/tex]
So, the correct answer is:
[tex]\[
\boxed{1}
\][/tex]