Solve the following expressions:

[tex]\[ 5 - 5 = 0 \][/tex]

[tex]\[ -5 - (-5) = \square \][/tex]

[tex]\[ -5 - 5 = \square \][/tex]

[tex]\[ 5 - (-5) = \square \][/tex]

Fill in the blanks.



Answer :

To solve the given expressions, let's evaluate each one step-by-step:

### Expression 1: [tex]\( 5 - 5 \)[/tex]

Evaluate:
[tex]\[ 5 - 5 \][/tex]

Subtract 5 from 5:
[tex]\[ 5 - 5 = 0 \][/tex]

So, the value of the first expression is [tex]\( 0 \)[/tex].

### Expression 2: [tex]\(-5 - (-5)\)[/tex]

Evaluate:
[tex]\[ -5 - (-5) \][/tex]

Subtracting a negative number is the same as adding the positive counterpart:
[tex]\[ -5 - (-5) = -5 + 5 = 0 \][/tex]

So, the value of the second expression is [tex]\( 0 \)[/tex].

### Expression 3: [tex]\(-5 - 5\)[/tex]

Evaluate:
[tex]\[ -5 - 5 \][/tex]

Subtract 5 from -5:
[tex]\[ -5 - 5 = -10 \][/tex]

So, the value of the third expression is [tex]\( -10 \)[/tex].

### Expression 4: [tex]\( 5 - (-5) \)[/tex]

Evaluate:
[tex]\[ 5 - (-5) \][/tex]

Subtracting a negative number is the same as adding the positive counterpart:
[tex]\[ 5 - (-5) = 5 + 5 = 10 \][/tex]

So, the value of the fourth expression is [tex]\( 10 \)[/tex].

Therefore, the complete solutions are:

1. [tex]\( 5 - 5 = 0 \)[/tex]
2. [tex]\(-5 - (-5) = 0 \)[/tex]
3. [tex]\(-5 - 5 = -10 \)[/tex]
4. [tex]\(5 - (-5) = 10 \)[/tex]

Thus, filling in the blanks, we have:
[tex]\[ \begin{array}{l} 5-5=0 \\ -5-(-5)=0 \end{array} \][/tex]
[tex]\[ \begin{array}{l} -5-5=-10 \\ 5-(-5)=10 \end{array} \][/tex]