Answer :
Given the system of equations:
[tex]\[ \begin{aligned} 2x - y &= 12 \\ -3x - 5y &= -5 \end{aligned} \][/tex]
Follow the steps to solve the system:
1. Step 1: Multiply the first equation by -5:
[tex]\[ -5(2x - y) = -5(12) \][/tex]
which results in:
[tex]\[ -10x + 5y = -60 \][/tex]
Now our system is:
[tex]\[ \begin{aligned} -10x + 5y &= -60 \\ -3x - 5y &= -5 \end{aligned} \][/tex]
2. Step 2: Rewrite the system with the new equation from Step 1:
[tex]\[ \begin{aligned} -10x + 5y &= -60 \\ -3x - 5y &= -5 \end{aligned} \][/tex]
3. Step 3: Subtract the second equation from the first:
[tex]\[ (-10x + 5y) - (-3x - 5y) = -60 - (-5) \][/tex]
Simplifying this, you get:
[tex]\[ -10x + 5y + 3x + 5y = -60 + 5 \][/tex]
[tex]\[ -7x + 10y = -55 \][/tex]
Since the first variable terms combine to [tex]\(-7x\)[/tex] and the constants on the right-hand side combine to [tex]\(-55\)[/tex], you end up with:
[tex]\[ -7x = -55 \][/tex]
This simplifies to:
[tex]\[ x = 5 \][/tex]
4. Now, substitute [tex]\(x = 5\)[/tex] back into one of the original equations to find [tex]\(y\)[/tex]. Choose [tex]\(2x - y = 12\)[/tex]:
[tex]\[ 2(5) - y = 12 \][/tex]
[tex]\[ 10 - y = 12 \][/tex]
[tex]\[ -y = 2 \][/tex]
[tex]\[ y = -2 \][/tex]
Thus, the solution to the original system of equations is [tex]\((x, y) = (5, -2)\)[/tex].
Given the steps and the solution, the correct statement about Step 3 is:
A. When the equation [tex]\( -3x - 5y = -5 \)[/tex] is subtracted from [tex]\( -10x + 5y = -60 \)[/tex], a third linear equation, [tex]\( -13x = -65 \)[/tex], is formed, and it shares a common solution with the original equations.
Therefore, the correct answer is:
A
[tex]\[ \begin{aligned} 2x - y &= 12 \\ -3x - 5y &= -5 \end{aligned} \][/tex]
Follow the steps to solve the system:
1. Step 1: Multiply the first equation by -5:
[tex]\[ -5(2x - y) = -5(12) \][/tex]
which results in:
[tex]\[ -10x + 5y = -60 \][/tex]
Now our system is:
[tex]\[ \begin{aligned} -10x + 5y &= -60 \\ -3x - 5y &= -5 \end{aligned} \][/tex]
2. Step 2: Rewrite the system with the new equation from Step 1:
[tex]\[ \begin{aligned} -10x + 5y &= -60 \\ -3x - 5y &= -5 \end{aligned} \][/tex]
3. Step 3: Subtract the second equation from the first:
[tex]\[ (-10x + 5y) - (-3x - 5y) = -60 - (-5) \][/tex]
Simplifying this, you get:
[tex]\[ -10x + 5y + 3x + 5y = -60 + 5 \][/tex]
[tex]\[ -7x + 10y = -55 \][/tex]
Since the first variable terms combine to [tex]\(-7x\)[/tex] and the constants on the right-hand side combine to [tex]\(-55\)[/tex], you end up with:
[tex]\[ -7x = -55 \][/tex]
This simplifies to:
[tex]\[ x = 5 \][/tex]
4. Now, substitute [tex]\(x = 5\)[/tex] back into one of the original equations to find [tex]\(y\)[/tex]. Choose [tex]\(2x - y = 12\)[/tex]:
[tex]\[ 2(5) - y = 12 \][/tex]
[tex]\[ 10 - y = 12 \][/tex]
[tex]\[ -y = 2 \][/tex]
[tex]\[ y = -2 \][/tex]
Thus, the solution to the original system of equations is [tex]\((x, y) = (5, -2)\)[/tex].
Given the steps and the solution, the correct statement about Step 3 is:
A. When the equation [tex]\( -3x - 5y = -5 \)[/tex] is subtracted from [tex]\( -10x + 5y = -60 \)[/tex], a third linear equation, [tex]\( -13x = -65 \)[/tex], is formed, and it shares a common solution with the original equations.
Therefore, the correct answer is:
A