7. Simplify [tex]2a^2b^3\left(4a^2+3ab^2-ab\right)[/tex]:

A. [tex]8a^4b^3+6a^3b^5-2a^3b^4[/tex]
B. [tex]8a^4b^5+3a^3b^5+2a^3b^4[/tex]
C. [tex]8a^4b^5+3a^3b^5-2a^3b^4[/tex]
D. [tex]8a^4b^3+6a^3b^5+2a^3b^4[/tex]



Answer :

Let's simplify the given expression step-by-step:

We start with the expression:
[tex]\[ 2 a^2 b^3 \left( 4 a^2 + 3 a b^2 - a b \right) \][/tex]

1. Distribute [tex]\(2 a^2 b^3\)[/tex] into each term inside the parentheses:

[tex]\[ 2 a^2 b^3 \cdot 4 a^2 + 2 a^2 b^3 \cdot 3 a b^2 - 2 a^2 b^3 \cdot a b \][/tex]

2. Multiply each term:

[tex]\[ 2 a^2 b^3 \cdot 4 a^2 = 2 \cdot 4 \cdot a^2 \cdot a^2 \cdot b^3 = 8 a^4 b^3 \][/tex]

[tex]\[ 2 a^2 b^3 \cdot 3 a b^2 = 2 \cdot 3 \cdot a^2 \cdot a \cdot b^3 \cdot b^2 = 6 a^3 b^5 \][/tex]

[tex]\[ 2 a^2 b^3 \cdot a b = 2 \cdot a^2 \cdot a \cdot b^3 \cdot b = 2 a^3 b^4 \][/tex]

3. Combine the terms together:

[tex]\[ 8 a^4 b^3 + 6 a^3 b^5 - 2 a^3 b^4 \][/tex]

So, after simplification, the result is:
[tex]\[ 2 a^3 b^3 (4 a + 3 b^2 - b) \][/tex]
which matches with our steps of simplifying the expression.

Thus, the correct option that matches this simplified form is:
[tex]\[ \boxed{8 a^4 b^3 + 6 a^3 b^5 - 2 a^3 b^4} \][/tex]

This corresponds to option (A) from the provided choices.