What is the following product?

[tex]\[ \sqrt[4]{7} \cdot \sqrt[4]{7} \cdot \sqrt[4]{7} \cdot \sqrt[4]{7} \][/tex]

A. [tex]\[ 4(\sqrt[4]{7}) \][/tex]

B. [tex]\[ 4 \sqrt{7} \][/tex]

C. [tex]\[ 7^4 \][/tex]

D. [tex]\[ 7 \][/tex]



Answer :

To solve the problem of evaluating the product
[tex]\[ \sqrt[4]{7} \cdot \sqrt[4]{7} \cdot \sqrt[4]{7} \cdot \sqrt[4]{7}, \][/tex]
we need to understand how to work with roots and exponents.

First, let's express [tex]\(\sqrt[4]{7}\)[/tex] using exponents. The fourth root of 7 can be written as:
[tex]\[ \sqrt[4]{7} = 7^{\frac{1}{4}}. \][/tex]

Next, consider the given product:
[tex]\[ \sqrt[4]{7} \cdot \sqrt[4]{7} \cdot \sqrt[4]{7} \cdot \sqrt[4]{7}. \][/tex]
Using the exponent form, this is:
[tex]\[ 7^{\frac{1}{4}} \cdot 7^{\frac{1}{4}} \cdot 7^{\frac{1}{4}} \cdot 7^{\frac{1}{4}}. \][/tex]

We can simplify the product of these exponentials by using the property of exponents that states [tex]\(a^m \cdot a^n = a^{m+n}\)[/tex]. Applying this property, we get:
[tex]\[ 7^{\frac{1}{4}} \cdot 7^{\frac{1}{4}} \cdot 7^{\frac{1}{4}} \cdot 7^{\frac{1}{4}} = 7^{\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4}}. \][/tex]

Next, add the exponents together:
[tex]\[ \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = 1. \][/tex]

Therefore, we have:
[tex]\[ 7^{\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4}} = 7^1. \][/tex]

And simplifying the exponential, we obtain:
[tex]\[ 7^1 = 7. \][/tex]

So, the product of [tex]\(\sqrt[4]{7} \cdot \sqrt[4]{7} \cdot \sqrt[4]{7} \cdot \sqrt[4]{7}\)[/tex] is:
[tex]\[ \boxed{7}. \][/tex]