Answer :
To find the maximum capacity of a cuboidal bathtub, we need to follow these steps:
1. Identify the given dimensions of the bathtub:
- Length = 160 cm
- Width = 40 cm
- Height = 50 cm
2. Calculate the volume of the bathtub in cubic centimeters (cm³):
The formula for the volume of a cuboid is:
[tex]\[ \text{Volume} = \text{Length} \times \text{Width} \times \text{Height} \][/tex]
Substituting the given dimensions:
[tex]\[ \text{Volume} = 160 \, \text{cm} \times 40 \, \text{cm} \times 50 \, \text{cm} \][/tex]
3. Perform the multiplication:
[tex]\[ \text{Volume} = 160 \times 40 \times 50 \, \text{cm}^3 = 320,000 \, \text{cm}^3 \][/tex]
4. Convert the volume from cubic centimeters to liters:
We know that [tex]\( 1 \, \text{litre} = 1000 \, \text{cm}^3 \)[/tex].
Therefore, to convert the volume in cubic centimeters to liters, we divide by 1000:
[tex]\[ \text{Volume in litres} = \frac{\text{Volume in } \text{cm}^3}{1000} \][/tex]
Substituting the volume we calculated:
[tex]\[ \text{Volume in litres} = \frac{320,000 \, \text{cm}^3}{1000} = 320 \, \text{litres} \][/tex]
Thus, the maximum capacity of the bathtub is [tex]\( 320 \)[/tex] litres.
1. Identify the given dimensions of the bathtub:
- Length = 160 cm
- Width = 40 cm
- Height = 50 cm
2. Calculate the volume of the bathtub in cubic centimeters (cm³):
The formula for the volume of a cuboid is:
[tex]\[ \text{Volume} = \text{Length} \times \text{Width} \times \text{Height} \][/tex]
Substituting the given dimensions:
[tex]\[ \text{Volume} = 160 \, \text{cm} \times 40 \, \text{cm} \times 50 \, \text{cm} \][/tex]
3. Perform the multiplication:
[tex]\[ \text{Volume} = 160 \times 40 \times 50 \, \text{cm}^3 = 320,000 \, \text{cm}^3 \][/tex]
4. Convert the volume from cubic centimeters to liters:
We know that [tex]\( 1 \, \text{litre} = 1000 \, \text{cm}^3 \)[/tex].
Therefore, to convert the volume in cubic centimeters to liters, we divide by 1000:
[tex]\[ \text{Volume in litres} = \frac{\text{Volume in } \text{cm}^3}{1000} \][/tex]
Substituting the volume we calculated:
[tex]\[ \text{Volume in litres} = \frac{320,000 \, \text{cm}^3}{1000} = 320 \, \text{litres} \][/tex]
Thus, the maximum capacity of the bathtub is [tex]\( 320 \)[/tex] litres.