Given the equation:

[tex]\[ y = x^4 \][/tex]

Fill in the table below with the correct values for [tex]\( y \)[/tex]:

[tex]\[
\begin{tabular}{|c|c|}
\hline
x & y \\
\hline
-3 & \square \\
\hline
-1 & \square \\
\hline
1 & \square \\
\hline
-1 & \square \\
\hline
\end{tabular}
\][/tex]

The table above should show the correct [tex]\( y \)[/tex]-values for the given [tex]\( x \)[/tex]-values.



Answer :

To find the [tex]\( y \)[/tex]-values corresponding to each [tex]\( x \)[/tex]-value for the function [tex]\( y = x^4 \)[/tex], let us evaluate [tex]\( x^4 \)[/tex] for each given value of [tex]\( x \)[/tex].

Given [tex]\( x = -3 \)[/tex]:
[tex]\[ y = (-3)^4 = 81 \][/tex]

Given [tex]\( x = -1 \)[/tex]:
[tex]\[ y = (-1)^4 = 1 \][/tex]

Given [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 1^4 = 1 \][/tex]

Given [tex]\( x = -1 \)[/tex] again:
[tex]\[ y = (-1)^4 = 1 \][/tex]

Now, let's compile these results into the table:

[tex]\[ \begin{tabular}{|c|c|} \hline x & y \\ \hline -3 & 81 \\ \hline -1 & 1 \\ \hline 1 & 1 \\ \hline -1 & 1 \\ \hline \end{tabular} \][/tex]

Therefore, this is the correct tabulated form of the function [tex]\( y = x^4 \)[/tex] for the given [tex]\( x \)[/tex]-values.