Select the correct answer from each drop-down menu.

Simplify the following polynomial expression.

[tex]
(3x^2 - x - 7) - (5x^2 - 4x - 2) + (x + 3)(x + 2)
[/tex]

The polynomial simplifies to an expression that is a [tex]$\square$[/tex] [tex]$\square$[/tex] with a degree of [tex]$2$[/tex].



Answer :

To simplify the polynomial expression [tex]\((3x^2 - x - 7) - (5x^2 - 4x - 2) + (x + 3)(x + 2)\)[/tex], let's go through it step by step.

1. First, expand [tex]\((x + 3)(x + 2)\)[/tex]:
[tex]\[ (x + 3)(x + 2) = x \cdot x + x \cdot 2 + 3 \cdot x + 3 \cdot 2 = x^2 + 2x + 3x + 6 = x^2 + 5x + 6 \][/tex]

2. Next, distribute the negative sign in [tex]\(-(5x^2 - 4x - 2)\)[/tex]:
[tex]\[ - (5x^2 - 4x - 2) = -5x^2 + 4x + 2 \][/tex]

3. Now, combine all parts of the expression:
[tex]\[ (3x^2 - x - 7) + (-5x^2 + 4x + 2) + (x^2 + 5x + 6) \][/tex]

4. Combine like terms for each degree of [tex]\(x\)[/tex]:

- For [tex]\(x^2\)[/tex]:
[tex]\[ 3x^2 - 5x^2 + x^2 = -x^2 \][/tex]

- For [tex]\(x\)[/tex]:
[tex]\[ -x + 4x + 5x = 8x \][/tex]

- For the constant term:
[tex]\[ -7 + 2 + 6 = 1 \][/tex]

So, the simplified polynomial expression is:
[tex]\[ -x^2 + 8x + 1 \][/tex]

The simplified polynomial is a trinomial with a degree of 2.

Hence, the polynomial simplifies to an expression that is a trinomial with a degree of 2.