Verify the following:

(i) [tex]\((-20) \times [13 + (-3)] = [(-20) \times 13] + [(-20) \times (-3)]\)[/tex]

(ii) [tex]\(25 \times [7 + (-3)] = [25 \times 7] + [25 \times (-3)]\)[/tex]



Answer :

Sure, let's verify each part step-by-step.

### Part (i)
We need to verify that:
[tex]\[ (-20) \times [13 + (-3)] = [(-20) \times 13] + [(-20) \times (-3)] \][/tex]

First, let's calculate the left-hand side:

1. Compute the expression inside the parentheses:
[tex]\[ 13 + (-3) = 10 \][/tex]

2. Multiply by -20:
[tex]\[ (-20) \times 10 = -200 \][/tex]

So the left-hand side is [tex]\(-200\)[/tex].

Next, let's calculate the right-hand side:

1. Multiply -20 by 13:
[tex]\[ (-20) \times 13 = -260 \][/tex]

2. Multiply -20 by -3:
[tex]\[ (-20) \times (-3) = 60 \][/tex]

3. Add the two results:
[tex]\[ -260 + 60 = -200 \][/tex]

Therefore, the right-hand side is also [tex]\(-200\)[/tex].

Since the left-hand side equals the right-hand side ([tex]\(-200 = -200\)[/tex]), the verification holds true for part (i).

### Part (ii)
We need to verify that:
[tex]\[ 25 \times [7 + (-3)] = [25 \times 7] + [25 \times (-3)] \][/tex]

First, let's calculate the left-hand side:

1. Compute the expression inside the parentheses:
[tex]\[ 7 + (-3) = 4 \][/tex]

2. Multiply by 25:
[tex]\[ 25 \times 4 = 100 \][/tex]

So the left-hand side is [tex]\(100\)[/tex].

Next, let's calculate the right-hand side:

1. Multiply 25 by 7:
[tex]\[ 25 \times 7 = 175 \][/tex]

2. Multiply 25 by -3:
[tex]\[ 25 \times (-3) = -75 \][/tex]

3. Add the two results:
[tex]\[ 175 + (-75) = 100 \][/tex]

Therefore, the right-hand side is also [tex]\(100\)[/tex].

Since the left-hand side equals the right-hand side ([tex]\(100 = 100\)[/tex]), the verification holds true for part (ii).

In both cases, the given equalities are verified to be true.