The given expression is nonsensical due to the incorrect placement of commas. It appears to be an attempt to create a fraction with a numerator and a denominator. Here is a corrected and sensible version of the question:

-----

Simplify the fraction:

[tex]\[ \frac{24}{313354524} \][/tex]

-----



Answer :

Sure, let's break down the solution for the given fraction step-by-step:

We need to evaluate the fraction:

[tex]\[ \frac{24}{(3, 13, 3, 5, 4, 5, 24)} \][/tex]

### Step 1: Understand the Structure
The given format seems to suggest that we have a numerator [tex]\(24\)[/tex] and multiple values in the denominator. It implies we need to multiply all these values together to form a single denominator.

### Step 2: Multiply the Denominator Values
Let's multiply the values in the denominator together:

[tex]\[ 3 \times 13 \times 3 \times 5 \times 4 \times 5 \times 24 \][/tex]

First, we can pair and multiply:
[tex]\[ (3 \times 13) = 39 \][/tex]
[tex]\[ (39 \times 3) = 117 \][/tex]
[tex]\[ (117 \times 5) = 585 \][/tex]
[tex]\[ (585 \times 4) = 2340 \][/tex]
[tex]\[ (2340 \times 5) = 11700 \][/tex]
[tex]\[ (11700 \times 24) = 280800 \][/tex]

So, the product of the denominators is:

[tex]\[ \text{Denominator} = 280800 \][/tex]

### Step 3: Divide the Numerator by the Denominator
Now, we need to divide the numerator by the product of the denominators:

[tex]\[ \frac{24}{280800} \][/tex]

### Step 4: Simplify the Fraction
Perform the division:

[tex]\[ 24 \div 280800 \approx 0.00008547008547008547 \][/tex]

### Intermediate and Final Results
Thus, we have:

[tex]\[ \text{Product of denominators} = 280800 \][/tex]
[tex]\[ \text{Final result} = 0.00008547008547008547 \][/tex]

Written in scientific notation, this is approximately:

[tex]\[ 8.547008547008547 \times 10^{-5} \][/tex]

Thus, the final fraction result is [tex]\(\boxed{0.00008547008547008547}\)[/tex] and the product of the denominators is [tex]\(280800\)[/tex].