Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
[tex]$c^2+2cd+dz$[/tex]
-----

Response:
Correct the expression and provide context.

Given the expression:

[tex]\[ c^2 + 2cd + dz \][/tex]

Determine its simplified form or provide an appropriate context if necessary.



Answer :

To evaluate the algebraic expression [tex]\(c^2 + 2cd + dz\)[/tex], we need to follow these steps:

1. Identify the Values of Variables:
Let's assume the values provided for the variables are:
- [tex]\(c = 1\)[/tex]
- [tex]\(d = 1\)[/tex]
- [tex]\(z = 1\)[/tex]

2. Calculate Each Term Individually:
- First Term: [tex]\(c^2\)[/tex]
[tex]\[ c^2 = 1^2 = 1 \][/tex]

- Second Term: [tex]\(2cd\)[/tex]
[tex]\[ 2 \cdot c \cdot d = 2 \cdot 1 \cdot 1 = 2 \][/tex]

- Third Term: [tex]\(dz\)[/tex]
[tex]\[ d \cdot z = 1 \cdot 1 = 1 \][/tex]

3. Add the Results of Each Term Together:
Now, sum all the terms:
[tex]\[ c^2 + 2cd + dz = 1 + 2 + 1 \][/tex]

4. Compute the Final Result:
Adding these values together:
[tex]\[ 1 + 2 + 1 = 4 \][/tex]

Therefore, the value of the expression [tex]\(c^2 + 2cd + dz\)[/tex] when [tex]\(c = 1\)[/tex], [tex]\(d = 1\)[/tex], and [tex]\(z = 1\)[/tex] is:
[tex]\[ \boxed{4} \][/tex]

Additionally, the individual terms are:
- [tex]\(c^2 = 1\)[/tex]
- [tex]\(2cd = 2\)[/tex]
- [tex]\(dz = 1\)[/tex]

Thus, the complete results are:
[tex]\[ (1, 2, 1, 4) \][/tex]