Use two truth tables to show that the pair of compound statements are equivalent: [tex]\( p \vee (q \wedge \sim p) \)[/tex] and [tex]\( p \vee q \)[/tex].

[tex]\[
\begin{array}{|c|c|c|c|c|}
\hline
p & q & \sim p & q \wedge \sim p & p \vee (q \wedge \sim p) \\
\hline
T & T & F & F & T \\
T & F & F & F & T \\
F & T & T & T & T \\
F & F & T & F & F \\
\hline
\end{array}
\][/tex]

[tex]\[
\begin{array}{|c|c|c|}
\hline
p & q & p \vee q \\
\hline
T & T & T \\
T & F & T \\
F & T & T \\
F & F & F \\
\hline
\end{array}
\][/tex]

From the above truth tables, we can observe that [tex]\( p \vee (q \wedge \sim p) \)[/tex] and [tex]\( p \vee q \)[/tex] produce the same results for all combinations of truth values for [tex]\( p \)[/tex] and [tex]\( q \)[/tex], thus proving their equivalence.



Answer :

To show that the compound statements [tex]\(p \vee (q \wedge \sim p)\)[/tex] and [tex]\(p \vee q\)[/tex] are equivalent, we will construct and analyze the corresponding truth tables. This process involves evaluating the truth values for each compound statement under all possible truth values of [tex]\(p\)[/tex] and [tex]\(q\)[/tex].

Let's start with the truth table for the first compound statement [tex]\(p \vee (q \wedge \sim p)\)[/tex]:

[tex]\[ \begin{array}{|c|c|c|c|c|} \hline p & q & \sim p & q \wedge \sim p & p \vee (q \wedge \sim p) \\ \hline T & T & F & F & T \\ T & F & F & F & T \\ F & T & T & T & T \\ F & F & T & F & F \\ \hline \end{array} \][/tex]

Explanation:
- [tex]\(p\)[/tex] and [tex]\(q\)[/tex] represent the possible truth values.
- [tex]\(\sim p\)[/tex] is the negation of [tex]\(p\)[/tex].
- [tex]\(q \wedge \sim p\)[/tex] is the conjunction of [tex]\(q\)[/tex] and [tex]\(\sim p\)[/tex].
- [tex]\(p \vee (q \wedge \sim p)\)[/tex] is the disjunction of [tex]\(p\)[/tex] and [tex]\(q \wedge \sim p\)[/tex].

Next, let's build the truth table for the second compound statement [tex]\(p \vee q\)[/tex]:

[tex]\[ \begin{array}{|c|c|c|} \hline p & q & p \vee q \\ \hline T & T & T \\ T & F & T \\ F & T & T \\ F & F & F \\ \hline \end{array} \][/tex]

Now, we compare the results of both truth tables:

[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline p & q & p \vee (q \wedge \sim p) & p \vee q \\ \hline T & T & T & T \\ T & F & T & T \\ F & T & T & T \\ F & F & F & F \\ \hline \end{array} \][/tex]

As we can see:
- When [tex]\(p\)[/tex] is True and [tex]\(q\)[/tex] is True, both [tex]\(p \vee (q \wedge \sim p)\)[/tex] and [tex]\(p \vee q\)[/tex] evaluate to True.
- When [tex]\(p\)[/tex] is True and [tex]\(q\)[/tex] is False, both [tex]\(p \vee (q \wedge \sim p)\)[/tex] and [tex]\(p \vee q\)[/tex] evaluate to True.
- When [tex]\(p\)[/tex] is False and [tex]\(q\)[/tex] is True, both [tex]\(p \vee (q \wedge \sim p)\)[/tex] and [tex]\(p \vee q\)[/tex] evaluate to True.
- When [tex]\(p\)[/tex] is False and [tex]\(q\)[/tex] is False, both [tex]\(p \vee (q \wedge \sim p)\)[/tex] and [tex]\(p \vee q\)[/tex] evaluate to False.

Since the corresponding truth values of [tex]\(p \vee (q \wedge \sim p)\)[/tex] and [tex]\(p \vee q\)[/tex] match for all possible truth values of [tex]\(p\)[/tex] and [tex]\(q\)[/tex], the compound statements are equivalent.