A function is defined by [tex]$f(x)=\frac{1}{4}$[/tex]. What is [tex]$f(-8)$[/tex]?

A. [tex]-2[/tex]
B. [tex]\frac{1}{2}[/tex]
C. [tex]\frac{1}{2}[/tex]
D. [tex]2[/tex]



Answer :

To determine the value of [tex]\( f(-8) \)[/tex] for the function [tex]\( f(x) = \frac{1}{4} \)[/tex], we need to evaluate the function at [tex]\( x = -8 \)[/tex].

Step-by-Step Solution:

1. Understand the function: The function [tex]\( f(x) \)[/tex] is given as [tex]\( f(x) = \frac{1}{4} \)[/tex]. This indicates that the value of the function is always [tex]\(\frac{1}{4}\)[/tex] regardless of the input [tex]\( x \)[/tex].

2. Evaluate at [tex]\( x = -8 \)[/tex]: Even though the function [tex]\( f \)[/tex] is supposed to take an input [tex]\( x \)[/tex], the given function is a constant function, meaning it does not change with different values of [tex]\( x \)[/tex]. Hence, [tex]\( f(-8) = \frac{1}{4} \)[/tex].

3. Simplify the value: The fraction [tex]\(\frac{1}{4}\)[/tex] can be represented in decimal form.

Thus:
[tex]\[ f(-8) = \frac{1}{4} = 0.25 \][/tex]

So, the value of [tex]\( f(-8) \)[/tex] is [tex]\( \boxed{0.25} \)[/tex], and it does not match any of the provided choices, which must be interpreted as an error in the choices provided.