The table represents the function [tex]f(x) = 2x + 1[/tex].

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-3 & -5 \\
\hline
2 & \\
\hline
5 & 11 \\
\hline
8 & 17 \\
\hline
\end{tabular}

Which value goes in the empty cell?

A. 3

B. 5

C. 8

D. 23



Answer :

To fill in the missing value for [tex]\( f(2) \)[/tex] in the table that represents the function [tex]\( f(x) = 2x + 1 \)[/tex], we need to evaluate the function at [tex]\( x = 2 \)[/tex].

The function given is:
[tex]\[ f(x) = 2x + 1 \][/tex]

We need to find [tex]\( f(2) \)[/tex]:
[tex]\[ f(2) = 2(2) + 1 \][/tex]
[tex]\[ f(2) = 4 + 1 \][/tex]
[tex]\[ f(2) = 5 \][/tex]

Therefore, the value that goes in the empty cell [tex]\( f(2) \)[/tex] in the table is [tex]\( 5 \)[/tex].

So, the correct answer is:
[tex]\[ \boxed{5} \][/tex]