Solve [tex]\( w = t\left( r_1 + r_2 \right) \)[/tex] for [tex]\( t \)[/tex].

A. [tex]\( t = w \left( r_1 + r_2 \right) \)[/tex]
B. [tex]\( t = \frac{w}{r_1 + r_2} \)[/tex]
C. [tex]\( t = w - \left( r_1 + r_2 \right) \)[/tex]



Answer :

Let's solve the equation [tex]\( w = t \left( r_1 + r_2 \right) \)[/tex] for [tex]\( t \)[/tex].

Given:
[tex]\[ w = t \left( r_1 + r_2 \right) \][/tex]

We aim to isolate [tex]\( t \)[/tex]. Follow these steps:

1. Identify the term containing [tex]\( t \)[/tex]:
The term [tex]\( t \left( r_1 + r_2 \right) \)[/tex] contains the unknown [tex]\( t \)[/tex].

2. Isolate [tex]\( t \)[/tex]:
Since [tex]\( t \)[/tex] is multiplied by [tex]\( ( r_1 + r_2 ) \)[/tex], we can isolate [tex]\( t \)[/tex] by dividing both sides of the equation by [tex]\( ( r_1 + r_2 ) \)[/tex].

3. Divide both sides by [tex]\( ( r_1 + r_2 ) \)[/tex]:
[tex]\[ t = \frac{w}{r_1 + r_2} \][/tex]

So, the solution to the equation [tex]\( w = t \left( r_1 + r_2 \right) \)[/tex] is:
[tex]\[ t = \frac{w}{r_1 + r_2} \][/tex]