Let's solve the equation [tex]\( w = t \left( r_1 + r_2 \right) \)[/tex] for [tex]\( t \)[/tex].
Given:
[tex]\[ w = t \left( r_1 + r_2 \right) \][/tex]
We aim to isolate [tex]\( t \)[/tex]. Follow these steps:
1. Identify the term containing [tex]\( t \)[/tex]:
The term [tex]\( t \left( r_1 + r_2 \right) \)[/tex] contains the unknown [tex]\( t \)[/tex].
2. Isolate [tex]\( t \)[/tex]:
Since [tex]\( t \)[/tex] is multiplied by [tex]\( ( r_1 + r_2 ) \)[/tex], we can isolate [tex]\( t \)[/tex] by dividing both sides of the equation by [tex]\( ( r_1 + r_2 ) \)[/tex].
3. Divide both sides by [tex]\( ( r_1 + r_2 ) \)[/tex]:
[tex]\[
t = \frac{w}{r_1 + r_2}
\][/tex]
So, the solution to the equation [tex]\( w = t \left( r_1 + r_2 \right) \)[/tex] is:
[tex]\[
t = \frac{w}{r_1 + r_2}
\][/tex]