Describe the steps you would take to solve the given literal equation for [tex]$m$[/tex].

Given:
[tex]\[ t = 2 \pi \sqrt{\frac{m}{k}} \][/tex]

Solution for [tex]$m$[/tex]:
[tex]\[ m = \frac{k t^2}{4 \pi^2} \][/tex]



Answer :

To solve the literal equation [tex]\( t = 2 \pi \sqrt{\frac{m}{k}} \)[/tex] for [tex]\( m \)[/tex], follow these steps:

1. Square both sides to eliminate the square root:
[tex]\[ t^2 = (2 \pi \sqrt{\frac{m}{k}})^2 \][/tex]

2. Simplify the right-hand side:
[tex]\[ t^2 = (2 \pi)^2 \left( \frac{m}{k} \right) \][/tex]
Here, [tex]\((2 \pi)^2\)[/tex] simplifies to [tex]\(4 \pi^2\)[/tex]. So,
[tex]\[ t^2 = 4 \pi^2 \left( \frac{m}{k} \right) \][/tex]

3. Multiply both sides by [tex]\( k \)[/tex] to isolate [tex]\( m \)[/tex] on the right-hand side:
[tex]\[ k t^2 = 4 \pi^2 m \][/tex]

4. Divide both sides by [tex]\( 4 \pi^2 \)[/tex] to solve for [tex]\( m \)[/tex]:
[tex]\[ m = \frac{k t^2}{4 \pi^2} \][/tex]

Thus, the solution for [tex]\( m \)[/tex] is:
[tex]\[ m = \frac{k t^2}{4 \pi^2} \][/tex]