Check all equations that are equivalent.

A. [tex]a = 180(n - 2)[/tex]

B. [tex]n = \frac{a}{180} + 1[/tex]

C. [tex]n = \frac{a}{180} + 2[/tex]

D. [tex]n = \frac{a + 360}{180}[/tex]



Answer :

Sure, let's check all the given equations step by step to see which ones are equivalent:

Given equations:
1. [tex]\( a = 180(n - 2) \)[/tex]
2. [tex]\( n = \frac{a}{180} + 1 \)[/tex]
3. [tex]\( n = \frac{a}{180} + 2 \)[/tex]
4. [tex]\( n = \frac{a + 360}{180} \)[/tex]

### Step 1: Simplify Equation 1
[tex]\[ a = 180(n - 2) \][/tex]

We solve for [tex]\( n \)[/tex]:
[tex]\[ a = 180n - 360 \][/tex]
[tex]\[ 180n = a + 360 \][/tex]
[tex]\[ n = \frac{a + 360}{180} \][/tex]

So, we have:
[tex]\[ n = \frac{a + 360}{180} \][/tex]

### Step 2: Compare the Result with Other Equations

#### Compare with Equation 2:
Equation 2 is:
[tex]\[ n = \frac{a}{180} + 1 \][/tex]

Clearly, the right-hand side [tex]\(\frac{a}{180} + 1\)[/tex] is not equal to [tex]\(\frac{a + 360}{180}\)[/tex]. Therefore, Equation 2 is not equivalent to Equation 1.

#### Compare with Equation 3:
Equation 3 is:
[tex]\[ n = \frac{a}{180} + 2 \][/tex]

Let's test this result:
[tex]\[ \frac{a + 360}{180} = \frac{a}{180} + \frac{360}{180} = \frac{a}{180} + 2 \][/tex]

Clearly, [tex]\(\frac{a + 360}{180}\)[/tex] is equal to [tex]\(\frac{a}{180} + 2\)[/tex]. Therefore, Equation 3 is equivalent to Equation 1.

#### Compare with Equation 4:
Equation 4 is:
[tex]\[ n = \frac{a + 360}{180} \][/tex]

We already obtained [tex]\( n = \frac{a + 360}{180} \)[/tex] from Equation 1. Therefore, Equation 4 is equivalent to Equation 1.

### Summary
After comparing, we find that Equations 3 and 4 are equivalent to Equation 1. Therefore, the equivalent equations are:

1. [tex]\( a = 180(n - 2) \)[/tex]
2. [tex]\( n = \frac{a}{180} + 2 \)[/tex]
3. [tex]\( n = \frac{a + 360}{180} \)[/tex]

Equation 2, [tex]\( n = \frac{a}{180} + 1 \)[/tex], is not equivalent to the others.