Answer :

To solve for [tex]\( h \)[/tex] in the equation [tex]\(0.0027 = 2.7 \times 10^h\)[/tex], we can follow these steps:

1. Isolate the exponential term [tex]\( 10^h \)[/tex]:
Begin by dividing both sides of the equation by 2.7 to isolate the [tex]\( 10^h \)[/tex] term.

[tex]\[ \frac{0.0027}{2.7} = \frac{2.7 \times 10^h}{2.7} \][/tex]

Simplifying the right-hand side, we get:

[tex]\[ \frac{0.0027}{2.7} = 10^h \][/tex]

2. Simplify the fraction:
Calculate the value of the fraction:

[tex]\[ \frac{0.0027}{2.7} = 0.001 \][/tex]

Therefore, the equation becomes:

[tex]\[ 0.001 = 10^h \][/tex]

3. Convert to logarithmic form:
To solve for [tex]\( h \)[/tex], take the base-10 logarithm (logarithm to base 10) of both sides:

[tex]\[ \log_{10}(0.001) = \log_{10}(10^h) \][/tex]

Using the logarithm property [tex]\( \log_{10}(10^h) = h \)[/tex]:

[tex]\[ \log_{10}(0.001) = h \][/tex]

4. Evaluate the logarithm:
Recall that [tex]\( 0.001 = 10^{-3} \)[/tex]. Therefore:

[tex]\[ \log_{10}(10^{-3}) = -3 \][/tex]

So, [tex]\( h \)[/tex] is:

[tex]\[ h = -3 \][/tex]

Therefore, the value of [tex]\( h \)[/tex] in the equation [tex]\( 0.0027 = 2.7 \times 10^h \)[/tex] is [tex]\(-3\)[/tex].