Answer :

Sure, let's solve the problem step-by-step.

### a. Area of the pool in [tex]\( \text{m}^2 \)[/tex]

1. Identify the dimensions of the pool:
- Length = [tex]\( 120 \, \text{m} \)[/tex]
- Width = [tex]\( 110 \, \text{m} \)[/tex]

2. Calculate the area using the formula for the area of a rectangle:
[tex]\[ \text{Area} = \text{Length} \times \text{Width} \][/tex]

3. Plug in the given dimensions:
[tex]\[ \text{Area} = 120 \, \text{m} \times 110 \, \text{m} \][/tex]

4. Perform the multiplication:
[tex]\[ \text{Area} = 13200 \, \text{m}^2 \][/tex]

So, the area of the pool is [tex]\( 13200 \, \text{m}^2 \)[/tex].

### b. Area of the pool in hectare

1. Recall the conversion factor:
- [tex]\( 1 \, \text{hectare} = 10{,}000 \, \text{m}^2 \)[/tex]

2. Use the calculated area in square meters:
[tex]\[ \text{Area in hectares} = \frac{\text{Area in} \, \text{m}^2}{10{,}000 \, \text{m}^2/\text{hectare}} \][/tex]

3. Substitute [tex]\( \text{Area} = 13200 \, \text{m}^2 \)[/tex] into the conversion formula:
[tex]\[ \text{Area in hectares} = \frac{13200 \, \text{m}^2}{10{,}000 \, \text{m}^2/\text{hectare}} \][/tex]

4. Perform the division:
[tex]\[ \text{Area in hectares} = 1.32 \, \text{hectares} \][/tex]

So, the area of the pool is [tex]\( 1.32 \, \text{hectares} \)[/tex].

To summarize:

- The area of the pool in [tex]\( \text{m}^2 \)[/tex] is [tex]\( 13200 \, \text{m}^2 \)[/tex].
- The area of the pool in hectares is [tex]\( 1.32 \, \text{hectares} \)[/tex].