6.
Complete the following table for [tex]$\log (x)$[/tex].

[tex]$\log (x)$[/tex] is the exponent to which the base 10 must be raised to get [tex]$x$[/tex].

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & [tex]$10^3$[/tex] & [tex]$10^2$[/tex] & [tex]$10^1$[/tex] & [tex]$10^0$[/tex] & [tex]$10^{-1}$[/tex] & [tex]$10^{-2}$[/tex] & [tex]$10^{-3}$[/tex] & [tex]$10^{1 / 2}$[/tex] \\
\hline
[tex]$\log (x)$[/tex] & 3 & 2 & 1 & 0 & -1 & -2 & -3 & [tex]$\frac{1}{2}$[/tex] \\
\hline
\end{tabular}



Answer :

To solve for [tex]\(\log(x)\)[/tex] for each given value of [tex]\(x\)[/tex], we need to understand what [tex]\(\log(x)\)[/tex] represents. The logarithm [tex]\(\log_{10}(x)\)[/tex], often written simply as [tex]\(\log(x)\)[/tex], refers to the exponent to which the base 10 must be raised to produce the number [tex]\(x\)[/tex].

Given the following values of [tex]\(x\)[/tex]:

- [tex]\(10^3\)[/tex]
- [tex]\(10^2\)[/tex]
- [tex]\(10^1\)[/tex]
- [tex]\(10^0\)[/tex]
- [tex]\(10^{-1}\)[/tex]
- [tex]\(10^{-2}\)[/tex]
- [tex]\(10^{-3}\)[/tex]
- [tex]\(10^{1/2}\)[/tex]

Let's find [tex]\(\log(x)\)[/tex] for each:

1. For [tex]\(x = 10^3\)[/tex]:
[tex]\[ \log(10^3) = 3 \][/tex]

2. For [tex]\(x = 10^2\)[/tex]:
[tex]\[ \log(10^2) = 2 \][/tex]

3. For [tex]\(x = 10^1\)[/tex]:
[tex]\[ \log(10^1) = 1 \][/tex]

4. For [tex]\(x = 10^0\)[/tex]:
[tex]\[ \log(10^0) = 0 \][/tex]

5. For [tex]\(x = 10^{-1}\)[/tex]:
[tex]\[ \log(10^{-1}) = -1 \][/tex]

6. For [tex]\(x = 10^{-2}\)[/tex]:
[tex]\[ \log(10^{-2}) = -2 \][/tex]

7. For [tex]\(x = 10^{-3}\)[/tex]:
[tex]\[ \log(10^{-3}) = -3 \][/tex]

8. For [tex]\(x = 10^{1/2}\)[/tex]:
[tex]\[ \log(10^{1/2}) = \frac{1}{2} \][/tex]

So, the completed table for [tex]\(\log(x)\)[/tex] is:

[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|} \hline x & 10^3 & 10^2 & 10^1 & 10^0 & 10^{-1} & 10^{-2} & 10^{-3} & 10^{1 / 2} \\ \hline \log(x) & 3 & 2 & 1 & 0 & -1 & -2 & -3 & 0.5 \\ \hline \end{array} \][/tex]