Select the correct answer.

Jason knows that the equation to calculate the period of a simple pendulum is [tex] T=2 \pi \sqrt{\frac{L}{g}} [/tex], where [tex] T [/tex] is the period, [tex] L [/tex] is the length of the rod, and [tex] g [/tex] is the acceleration due to gravity. He also knows that the frequency [tex] (f) [/tex] of the pendulum is the reciprocal of its period. How can he express [tex] L [/tex] in terms of [tex] g [/tex] and [tex] f [/tex]?

A. [tex] L=\frac{g}{4 \pi^2 f^2} [/tex]

B. [tex] L=\frac{9}{2 \pi / f^2} [/tex]

C. [tex] L=\frac{g}{2 \pi f^2} [/tex]

D. [tex] L=\frac{9}{4 \pi^2 f} [/tex]



Answer :

To express [tex]$L$[/tex] in terms of [tex]$g$[/tex] and [tex]$f$[/tex], we start with the given equation for the period [tex]\( T \)[/tex] of a simple pendulum:

[tex]\[ T = 2 \pi \sqrt{\frac{L}{g}} \][/tex]

We also know that the frequency [tex]\( f \)[/tex] is the reciprocal of the period [tex]\( T \)[/tex], so:

[tex]\[ f = \frac{1}{T} \][/tex]

Rewriting [tex]\( T \)[/tex] in terms of [tex]\( f \)[/tex]:

[tex]\[ T = \frac{1}{f} \][/tex]

Next, substitute [tex]\( T = \frac{1}{f} \)[/tex] into the original period equation:

[tex]\[ \frac{1}{f} = 2 \pi \sqrt{\frac{L}{g}} \][/tex]

To isolate [tex]\( L \)[/tex], we'll first get rid of the square root by squaring both sides of the equation:

[tex]\[ \left(\frac{1}{f}\right)^2 = (2 \pi)^2 \left(\frac{L}{g}\right) \][/tex]

Simplify the left side:

[tex]\[ \frac{1}{f^2} = 4 \pi^2 \left(\frac{L}{g}\right) \][/tex]

To isolate [tex]\( L \)[/tex], multiply both sides by [tex]\( g \)[/tex]:

[tex]\[ \frac{g}{f^2} = 4 \pi^2 L \][/tex]

Finally, divide both sides by [tex]\( 4 \pi^2 \)[/tex] to solve for [tex]\( L \)[/tex]:

[tex]\[ L = \frac{g}{4 \pi^2 f^2} \][/tex]

Thus, the correct answer is:

A. [tex]\( L = \frac{g}{4 \pi^2 f^2} \)[/tex]