9. Simplify [tex]\left(15x^2 - 24x + 9\right) \div (3x - 3)[/tex].

A. [tex]5x - 13[/tex] with a -30 remainder

B. [tex]5x - 3[/tex]

C. [tex]5x + 3[/tex]

D. [tex]5x + 13[/tex] with a -30 remainder



Answer :

Let's solve the problem step by step:

We need to simplify the expression [tex]\(\frac{15x^2 - 24x + 9}{3x - 3}\)[/tex].

To do this, we perform polynomial division, which involves dividing the numerator polynomial by the denominator polynomial.

1. Divide the first terms:
[tex]\[ \frac{15x^2}{3x} = 5x \][/tex]

2. Multiply the entire divisor by this result:
[tex]\[ (3x - 3) \cdot 5x = 15x^2 - 15x \][/tex]

3. Subtract the result from the original polynomial:
[tex]\[ (15x^2 - 24x + 9) - (15x^2 - 15x) = -24x + 15x + 9 = -9x + 9 \][/tex]

4. Divide the remaining first term by the first term of the divisor:
[tex]\[ \frac{-9x}{3x} = -3 \][/tex]

5. Multiply the entire divisor by this new quotient term:
[tex]\[ (3x - 3) \cdot (-3) = -9x + 9 \][/tex]

6. Subtract again:
[tex]\[ (-9x + 9) - (-9x + 9) = 0 \][/tex]

So the remainder is 0, and the quotient is [tex]\(5x - 3\)[/tex].

Therefore, the simplified form of the given expression is:

[tex]\[ \frac{15x^2 - 24x + 9}{3x - 3} = 5x - 3 \][/tex]

The correct choice is:
B. [tex]\(5x - 3\)[/tex]