Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
[tex]$\sqrt{25 x^5} y 3$[/tex]
-----

Response:
Simplify the expression:

[tex]\[ \sqrt{25 x^5} \cdot y \cdot 3 \][/tex]



Answer :

Sure, let's simplify the expression [tex]\(\sqrt{25 x^5} y 3\)[/tex].

1. Understand and identify each part of the expression:
The given expression is [tex]\(\sqrt{25 x^5} y 3\)[/tex]. This is a product of a square root term, a variable [tex]\(y\)[/tex], and a constant 3.

2. Simplify inside the square root:
First, simplify the term inside the square root: [tex]\(\sqrt{25 x^5}\)[/tex].
- The number 25 is a perfect square, so [tex]\(\sqrt{25} = 5\)[/tex].
- The [tex]\(x^5\)[/tex] can be split for simplification as [tex]\(\sqrt{x^5} = \sqrt{x^4 \cdot x} = \sqrt{x^4} \cdot \sqrt{x}\)[/tex].

3. Simplify the square root of [tex]\(x^4\)[/tex]:
- Since [tex]\(\sqrt{x^4} = x^2\)[/tex], we now have [tex]\(\sqrt{x^5} = x^2 \cdot \sqrt{x}\)[/tex].

4. Combine these simplifications:
- Combine the results to get [tex]\(\sqrt{25 x^5} = 5x^2 \sqrt{x}\)[/tex].

5. Substitute back into the original expression:
- Replace [tex]\(\sqrt{25 x^5}\)[/tex] with [tex]\(5x^2 \sqrt{x}\)[/tex], giving us [tex]\(5x^2 \sqrt{x} \cdot y \cdot 3\)[/tex].

6. Simplify the constants:
- Combine the constants [tex]\(5\)[/tex] and [tex]\(3\)[/tex]: [tex]\(5 \cdot 3 = 15\)[/tex].

7. Construct the final simplified form:
- Putting it all together, we get [tex]\(15x^2 \sqrt{x} \cdot y\)[/tex].

8. Reorganize the expression for clarity:
- We typically write such expressions in a more readable form: [tex]\(15 y x^2 \sqrt{x}\)[/tex].

So, the simplified form of the expression [tex]\(\sqrt{25 x^5} y 3\)[/tex] is:
[tex]\[ 15 y \sqrt{x^5} \][/tex]