Answer :

To solve the equation [tex]\( t + 5 + 3t = 1 \)[/tex] for [tex]\( t \)[/tex], follow these steps:

1. Combine like terms:

The equation is [tex]\( t + 5 + 3t = 1 \)[/tex]. Combine the terms involving [tex]\( t \)[/tex]:
[tex]\[ t + 3t + 5 = 1 \][/tex]
Simplify [tex]\( t + 3t \)[/tex] to get [tex]\( 4t \)[/tex]:
[tex]\[ 4t + 5 = 1 \][/tex]

2. Isolate the term involving [tex]\( t \)[/tex]:

To isolate the term [tex]\( 4t \)[/tex], subtract 5 from both sides of the equation:
[tex]\[ 4t + 5 - 5 = 1 - 5 \][/tex]
This simplifies to:
[tex]\[ 4t = -4 \][/tex]

3. Solve for [tex]\( t \)[/tex]:

To solve for [tex]\( t \)[/tex], divide both sides of the equation by 4:
[tex]\[ t = \frac{-4}{4} \][/tex]
This simplifies to:
[tex]\[ t = -1 \][/tex]

Hence, the value of [tex]\( t \)[/tex] is [tex]\(-1\)[/tex]. Therefore, the correct answer is:

C. -1