To solve the equation [tex]\( t + 5 + 3t = 1 \)[/tex] for [tex]\( t \)[/tex], follow these steps:
1. Combine like terms:
The equation is [tex]\( t + 5 + 3t = 1 \)[/tex]. Combine the terms involving [tex]\( t \)[/tex]:
[tex]\[
t + 3t + 5 = 1
\][/tex]
Simplify [tex]\( t + 3t \)[/tex] to get [tex]\( 4t \)[/tex]:
[tex]\[
4t + 5 = 1
\][/tex]
2. Isolate the term involving [tex]\( t \)[/tex]:
To isolate the term [tex]\( 4t \)[/tex], subtract 5 from both sides of the equation:
[tex]\[
4t + 5 - 5 = 1 - 5
\][/tex]
This simplifies to:
[tex]\[
4t = -4
\][/tex]
3. Solve for [tex]\( t \)[/tex]:
To solve for [tex]\( t \)[/tex], divide both sides of the equation by 4:
[tex]\[
t = \frac{-4}{4}
\][/tex]
This simplifies to:
[tex]\[
t = -1
\][/tex]
Hence, the value of [tex]\( t \)[/tex] is [tex]\(-1\)[/tex]. Therefore, the correct answer is:
C. -1