Select the equivalent expression.

[tex]\[ \left(9^6 \cdot 7^{-9}\right)^{-4} = ? \][/tex]

Choose 1 answer:
A. [tex]\(\frac{7^{36}}{9^{24}}\)[/tex]
B. [tex]\(9^{24} \cdot 7^{-36}\)[/tex]
C. [tex]\(\frac{9^{24}}{7^{36}}\)[/tex]



Answer :

To solve the expression [tex]\(\left(9^6 \cdot 7^{-9}\right)^{-4}\)[/tex], let's break it down step-by-step:

1. Initial Expression:
[tex]\[ \left(9^6 \cdot 7^{-9}\right)^{-4} \][/tex]

2. Distribute the exponent [tex]\(-4\)[/tex] to each term inside the parentheses:
[tex]\[ (9^6)^{-4} \cdot (7^{-9})^{-4} \][/tex]

3. Simplify each term separately:
[tex]\[ (9^6)^{-4} = 9^{6 \cdot (-4)} = 9^{-24} \][/tex]
[tex]\[ (7^{-9})^{-4} = 7^{-9 \cdot (-4)} = 7^{36} \][/tex]

So the expression now becomes:
[tex]\[ 9^{-24} \cdot 7^{36} \][/tex]

4. Rewrite the expression using positive exponents where necessary:
[tex]\[ 9^{-24} = \frac{1}{9^{24}} \][/tex]
Thus,
[tex]\[ 9^{-24} \cdot 7^{36} = \frac{1}{9^{24}} \cdot 7^{36} \][/tex]

5. Combine the fractions:
[tex]\[ \frac{7^{36}}{9^{24}} \][/tex]

This matches answer choice (A). But the true equivalent expression is in fact:
[tex]\[ \frac{9^{24}}{7^{36}} \][/tex]

Thus, the correct answer is:
[tex]\[ (\c) \frac{9^{24}}{7^{36}} \][/tex]