To solve the expression [tex]\(2x^4 - 4x^3\)[/tex] for [tex]\(x = 1\)[/tex], follow these steps carefully:
1. Substitute [tex]\(x = 1\)[/tex] into the expression:
The expression is given by [tex]\(2x^4 - 4x^3\)[/tex]. Plugging [tex]\(x = 1\)[/tex] into the expression, we have:
[tex]\[
2(1)^4 - 4(1)^3
\][/tex]
2. Evaluate [tex]\(1^4\)[/tex]:
[tex]\[
1^4 = 1
\][/tex]
3. Evaluate [tex]\(2 \times 1^4\)[/tex]:
[tex]\[
2 \times 1 = 2
\][/tex]
4. Evaluate [tex]\(1^3\)[/tex]:
[tex]\[
1^3 = 1
\][/tex]
5. Evaluate [tex]\(4 \times 1^3\)[/tex]:
[tex]\[
4 \times 1 = 4
\][/tex]
6. Subtract the results:
Now, subtract the second term from the first term:
[tex]\[
2 - 4
\][/tex]
7. Final result:
[tex]\[
2 - 4 = -2
\][/tex]
Therefore, the value of the expression [tex]\(2x^4 - 4x^3\)[/tex] for [tex]\(x = 1\)[/tex] is [tex]\(-2\)[/tex].