tofi69
Answered

Simplify the expression for [tex]\( x = 1 \)[/tex]:

[tex]\[ 2x^4 - 4x^3 \quad \text{for} \quad x = 1 \][/tex]



Answer :

To solve the expression [tex]\(2x^4 - 4x^3\)[/tex] for [tex]\(x = 1\)[/tex], follow these steps carefully:

1. Substitute [tex]\(x = 1\)[/tex] into the expression:
The expression is given by [tex]\(2x^4 - 4x^3\)[/tex]. Plugging [tex]\(x = 1\)[/tex] into the expression, we have:
[tex]\[ 2(1)^4 - 4(1)^3 \][/tex]

2. Evaluate [tex]\(1^4\)[/tex]:
[tex]\[ 1^4 = 1 \][/tex]

3. Evaluate [tex]\(2 \times 1^4\)[/tex]:
[tex]\[ 2 \times 1 = 2 \][/tex]

4. Evaluate [tex]\(1^3\)[/tex]:
[tex]\[ 1^3 = 1 \][/tex]

5. Evaluate [tex]\(4 \times 1^3\)[/tex]:
[tex]\[ 4 \times 1 = 4 \][/tex]

6. Subtract the results:
Now, subtract the second term from the first term:
[tex]\[ 2 - 4 \][/tex]

7. Final result:
[tex]\[ 2 - 4 = -2 \][/tex]

Therefore, the value of the expression [tex]\(2x^4 - 4x^3\)[/tex] for [tex]\(x = 1\)[/tex] is [tex]\(-2\)[/tex].