To find the value of [tex]\( h(9) \)[/tex] given the function [tex]\( h(x) = \sqrt{4x} \)[/tex], let's follow a step-by-step approach:
1. Substitute [tex]\( x = 9 \)[/tex] into the function [tex]\( h(x) \)[/tex]. This gives us:
[tex]\[
h(9) = \sqrt{4 \cdot 9}
\][/tex]
2. Multiply [tex]\( 4 \)[/tex] and [tex]\( 9 \)[/tex] inside the square root:
[tex]\[
4 \cdot 9 = 36
\][/tex]
3. Take the square root of [tex]\( 36 \)[/tex]:
[tex]\[
\sqrt{36} = 6
\][/tex]
Therefore, the value of [tex]\( h(9) \)[/tex] is [tex]\( 6.0 \)[/tex].