If [tex]$x - 2y = 0$[/tex], which of the following correctly gives [tex]$y$[/tex] in terms of [tex][tex]$x$[/tex][/tex]?



Answer :

To find [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex] given the equation [tex]\( x - 2y = 0 \)[/tex], follow these steps:

1. Start with the given equation:
[tex]\[ x - 2y = 0 \][/tex]

2. Isolate [tex]\( y \)[/tex]. First, add [tex]\( 2y \)[/tex] to both sides of the equation to move the term involving [tex]\( y \)[/tex] to one side:
[tex]\[ x - 2y + 2y = 0 + 2y \][/tex]
[tex]\[ x = 2y \][/tex]

3. Next, solve for [tex]\( y \)[/tex] by dividing both sides of the equation by 2:
[tex]\[ \frac{x}{2} = \frac{2y}{2} \][/tex]
[tex]\[ y = \frac{x}{2} \][/tex]

Thus, [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex] is given by:
[tex]\[ y = \frac{x}{2} \][/tex]