Answer :
To determine the net force acting on the car, we will use Newton's second law of motion, which is defined by the equation [tex]\( F = m \cdot a \)[/tex], where [tex]\( F \)[/tex] is the net force, [tex]\( m \)[/tex] is the mass, and [tex]\( a \)[/tex] is the acceleration.
Let's break it down step-by-step:
1. Identify the given quantities:
- Mass ([tex]\( m \)[/tex]): 1962 kg
- Acceleration ([tex]\( a \)[/tex]): 4 m/s²
2. Apply Newton's second law:
[tex]\[ F = m \cdot a \][/tex]
3. Substitute the given values into the equation:
[tex]\[ F = 1962 \, \text{kg} \times 4 \, \text{m/s}^2 \][/tex]
4. Perform the multiplication:
[tex]\[ F = 7848 \, \text{N} \][/tex]
Thus, the net force acting on the car is [tex]\( 7848 \, \text{N} \)[/tex] (Newtons).
Let's break it down step-by-step:
1. Identify the given quantities:
- Mass ([tex]\( m \)[/tex]): 1962 kg
- Acceleration ([tex]\( a \)[/tex]): 4 m/s²
2. Apply Newton's second law:
[tex]\[ F = m \cdot a \][/tex]
3. Substitute the given values into the equation:
[tex]\[ F = 1962 \, \text{kg} \times 4 \, \text{m/s}^2 \][/tex]
4. Perform the multiplication:
[tex]\[ F = 7848 \, \text{N} \][/tex]
Thus, the net force acting on the car is [tex]\( 7848 \, \text{N} \)[/tex] (Newtons).