Answer :

Given the equation [tex]\( a + b + c = 0 \)[/tex], we aim to find the value of [tex]\( (a + b)(b + d(c + 1)) \)[/tex].

### Step-by-Step Solution:

1. Substituting values:
Let’s assume some values:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = 2 \)[/tex]

2. Determining [tex]\( c \)[/tex]:
Since [tex]\( a + b + c = 0 \)[/tex], substituting the values we get:
[tex]\[ 1 + 2 + c = 0 \][/tex]
Solving for [tex]\( c \)[/tex], we have:
[tex]\[ 3 + c = 0 \][/tex]
[tex]\[ c = -3 \][/tex]

3. Assuming another variable [tex]\( d \)[/tex]:
Let [tex]\( d = 3 \)[/tex].

4. Evaluate [tex]\( a + b \)[/tex]:
[tex]\[ a + b = 1 + 2 = 3 \][/tex]

5. Evaluate [tex]\( c + 1 \)[/tex]:
[tex]\[ c + 1 = -3 + 1 = -2 \][/tex]

6. Evaluate [tex]\( d(c + 1) \)[/tex]:
[tex]\[ d(c + 1) = 3 \times (-2) = -6 \][/tex]

7. Evaluate [tex]\( b + d(c + 1) \)[/tex]:
[tex]\[ b + d(c + 1) = 2 + (-6) = 2 - 6 = -4 \][/tex]

8. Finally, calculate [tex]\( (a + b)(b + d(c + 1)) \)[/tex]:
[tex]\[ (a + b)(b + d(c + 1)) = 3 \times (-4) = -12 \][/tex]

### Recap of final values:
- [tex]\( a + b = 3 \)[/tex]
- [tex]\( b + d(c + 1) = -4 \)[/tex]
- The final result is:
[tex]\[ (a + b)(b + d(c + 1)) = -12 \][/tex]

Thus, the value of [tex]\( (a + b)(b + d(c + 1)) \)[/tex] is [tex]\(-12\)[/tex].