Answer :

Step-by-step explanation:

To compare \(2\sqrt{60}\) and \(3\sqrt{4}\), let's simplify each expression.

1. \(2\sqrt{60}\):

\[ 2\sqrt{60} = 2 \times \sqrt{60} = 2 \times \sqrt{4 \times 15} = 2 \times \sqrt{4} \times \sqrt{15} = 2 \times 2 \times \sqrt{15} = 4\sqrt{15} \]

2. \(3\sqrt{4}\):

\[ 3\sqrt{4} = 3 \times \sqrt{4} = 3 \times 2 = 6 \]

Now, we compare \(4\sqrt{15}\) and \(6\).

Next, approximate \(\sqrt{15}\):

\[ \sqrt{15} \approx 3.87 \]

Then:

\[ 4\sqrt{15} \approx 4 \times 3.87 = 15.48 \]

So, \(4\sqrt{15} \approx 15.48\) is greater than 6.

Therefore, \(2\sqrt{60}\) is greater than \(3\sqrt{4}\).