35. For all [tex]\( x \)[/tex], let [tex]\( f(x) = 10 - x \)[/tex]. If [tex]\( p = f(6) \)[/tex], which one of the following is [tex]\( 4p \)[/tex]?

A. 16
B. 18
C. 20
D. 24



Answer :

Let's solve the given question step by step:

We are given a function [tex]\( f(x) = (10 - x)_2 \)[/tex]. This notation indicates that [tex]\( 10 - x \)[/tex] is to be evaluated in base 2 (binary).

Step 1: Calculate [tex]\( f(6) \)[/tex]

First, substitute [tex]\( x = 6 \)[/tex] into the function:
[tex]\[ f(6) = (10 - 6)_2 \][/tex]

Subtract to get:
[tex]\[ 10 - 6 = 4 \][/tex]

So, we need to represent 4 in base 2 (binary). In binary, [tex]\( 4 \)[/tex] is written as [tex]\( 100_2 \)[/tex].

Hence, [tex]\( f(6) \)[/tex] evaluated in binary is 4 (but we keep it as a decimal here for simplicity).

So,
[tex]\[ p = f(6) = 4 \][/tex]

Step 2: Calculate [tex]\( 4p \)[/tex]

Now we need to find [tex]\( 4p \)[/tex]:
[tex]\[ 4p = 4 \times 4 \][/tex]

Multiply these values:
[tex]\[ 4 \times 4 = 16 \][/tex]

Finally, [tex]\( 4p \)[/tex] is:
[tex]\[ \boxed{16} \][/tex]

Therefore, [tex]\( 4p \)[/tex] is 16.