Answer :

Absolutely! Let's go through the long division of [tex]\( 13700 \div 7 \)[/tex] step by step.

1. Divide the first digit:
- Dividend: [tex]\( 13700 \)[/tex]
- Look at the first digit of the dividend, which is [tex]\( 1 \)[/tex].
- [tex]\( 1 \div 7 \)[/tex] is [tex]\( 0 \)[/tex] because [tex]\( 1 \)[/tex] is less than [tex]\( 7 \)[/tex].
- Therefore, write down [tex]\( 0 \)[/tex] and bring down the next digit, making the number [tex]\( 13 \)[/tex].

2. Divide [tex]\( 13 \)[/tex] by [tex]\( 7 \)[/tex]:
- Now we consider [tex]\( 13 \)[/tex].
- [tex]\( 13 \div 7 \)[/tex] goes [tex]\( 1 \)[/tex] time.
- Write down [tex]\( 1 \)[/tex].
- [tex]\( 7 \times 1 = 7 \)[/tex]
- Subtract [tex]\( 7 \)[/tex] from [tex]\( 13 \)[/tex]: [tex]\( 13 - 7 = 6 \)[/tex]

3. Bring down the next digit [tex]\( 7 \)[/tex]:
- Now, bring down the next digit from the dividend to make [tex]\( 67 \)[/tex].

4. Divide [tex]\( 67 \)[/tex] by [tex]\( 7 \)[/tex]:
- [tex]\( 67 \div 7 \)[/tex] goes [tex]\( 9 \)[/tex] times because [tex]\( 7 \times 9 = 63 \)[/tex].
- Write down [tex]\( 9 \)[/tex].
- Subtract [tex]\( 63 \)[/tex] from [tex]\( 67 \)[/tex]: [tex]\( 67 - 63 = 4 \)[/tex]

5. Bring down the next digit [tex]\( 0 \)[/tex]:
- Now, bring down the next digit from the dividend to make [tex]\( 40 \)[/tex].

6. Divide [tex]\( 40 \)[/tex] by [tex]\( 7 \)[/tex]:
- [tex]\( 40 \div 7 \)[/tex] goes [tex]\( 5 \)[/tex] times because [tex]\( 7 \times 5 = 35 \)[/tex].
- Write down [tex]\( 5 \)[/tex].
- Subtract [tex]\( 35 \)[/tex] from [tex]\( 40 \)[/tex]: [tex]\( 40 - 35 = 5 \)[/tex]

7. Bring down the next digit [tex]\( 0 \)[/tex]:
- Now, bring down the next digit from the dividend to make [tex]\( 50 \)[/tex].

8. Divide [tex]\( 50 \)[/tex] by [tex]\( 7 \)[/tex]:
- [tex]\( 50 \div 7 \)[/tex] goes [tex]\( 7 \)[/tex] times because [tex]\( 7 \times 7 = 49 \)[/tex].
- Write down [tex]\( 7 \)[/tex].
- Subtract [tex]\( 49 \)[/tex] from [tex]\( 50 \)[/tex]: [tex]\( 50 - 49 = 1 \)[/tex]

Therefore, the quotient is [tex]\( 1957 \)[/tex] and the remainder is [tex]\( 1 \)[/tex].

Thus, [tex]\( 13700 \div 7 = 1957 \)[/tex] with a remainder [tex]\( 1 \)[/tex].

The result can be written as:
[tex]\[ 13700 \div 7 = 1957 \, \text{R} \, 1 \][/tex]

Or, more formally:
[tex]\[ 13700 = 1957 \times 7 + 1 \][/tex]