5. If [tex]63 \times 98 = 6174[/tex], then [tex]6174 \times 98 =[/tex]

6. If [tex]101 \times 110 = 11110[/tex], then [tex]\ldots \ldots \ldots \ldots \ldots \ldots \ldots \times 110 = 101[/tex].



Answer :

Let’s tackle the problems step by step.

### Problem 5:
Given: [tex]\(63 \times 98 = 6174\)[/tex]

We need to find the result of [tex]\(6174 \times 98\)[/tex].

1. Start with the given result [tex]\(6174\)[/tex].
2. Multiply [tex]\(6174\)[/tex] by [tex]\(98\)[/tex]:
[tex]\[ 6174 \times 98 = 605052 \][/tex]

Thus, the result of [tex]\(6174 \times 98\)[/tex] is [tex]\(605052\)[/tex].

### Problem 6:
Given: [tex]\(101 \times 110 = 11110\)[/tex]

We need to find the number [tex]\(x\)[/tex] such that [tex]\(x \times 110 = 101\)[/tex].

1. We start with the equation:
[tex]\[ x \times 110 = 101 \][/tex]
2. To isolate [tex]\(x\)[/tex], divide both sides of the equation by [tex]\(110\)[/tex]:
[tex]\[ x = \frac{101}{110} = 0.9181818181818182 \][/tex]

Thus, the number [tex]\(x\)[/tex] which satisfies the equation is approximately [tex]\(0.9181818181818182\)[/tex].

So, the answers are:
- The result of [tex]\(6174 \times 98\)[/tex] is [tex]\(605052\)[/tex].
- The number that, when multiplied by [tex]\(110\)[/tex], yields [tex]\(101\)[/tex] is [tex]\(0.9181818181818182\)[/tex].