Sure, let's solve the expression [tex]\(3m - n^2\)[/tex] step-by-step given specific values for [tex]\(m\)[/tex] and [tex]\(n\)[/tex].
Suppose we have:
- [tex]\(m = 5\)[/tex]
- [tex]\(n = 2\)[/tex]
1. First, we substitute the values of [tex]\(m\)[/tex] and [tex]\(n\)[/tex] into the expression [tex]\(3m - n^2\)[/tex].
2. Substituting [tex]\(m = 5\)[/tex] and [tex]\(n = 2\)[/tex], the expression becomes:
[tex]\[
3 \times 5 - 2^2
\][/tex]
3. Next, we perform the multiplication for the term [tex]\(3 \times 5\)[/tex]:
[tex]\[
3 \times 5 = 15
\][/tex]
4. After that, we compute the square of [tex]\(n\)[/tex], which is [tex]\(2\)[/tex]:
[tex]\[
2^2 = 4
\][/tex]
5. Finally, we subtract the result of the square of [tex]\(n\)[/tex] from the multiplication result:
[tex]\[
15 - 4 = 11
\][/tex]
Therefore, the result of the expression [tex]\(3m - n^2\)[/tex] is:
[tex]\[
\boxed{11}
\][/tex]