Answer :

Sure, let's solve the expression [tex]\(3m - n^2\)[/tex] step-by-step given specific values for [tex]\(m\)[/tex] and [tex]\(n\)[/tex].

Suppose we have:
- [tex]\(m = 5\)[/tex]
- [tex]\(n = 2\)[/tex]

1. First, we substitute the values of [tex]\(m\)[/tex] and [tex]\(n\)[/tex] into the expression [tex]\(3m - n^2\)[/tex].

2. Substituting [tex]\(m = 5\)[/tex] and [tex]\(n = 2\)[/tex], the expression becomes:
[tex]\[ 3 \times 5 - 2^2 \][/tex]

3. Next, we perform the multiplication for the term [tex]\(3 \times 5\)[/tex]:
[tex]\[ 3 \times 5 = 15 \][/tex]

4. After that, we compute the square of [tex]\(n\)[/tex], which is [tex]\(2\)[/tex]:
[tex]\[ 2^2 = 4 \][/tex]

5. Finally, we subtract the result of the square of [tex]\(n\)[/tex] from the multiplication result:
[tex]\[ 15 - 4 = 11 \][/tex]

Therefore, the result of the expression [tex]\(3m - n^2\)[/tex] is:
[tex]\[ \boxed{11} \][/tex]