What is the energy of an orange lamp with a frequency of [tex]5.10 \times 10^{14} \, \text{Hz}[/tex]?

Use the formula [tex]E = h \cdot f[/tex], where:
- [tex]E[/tex] is the energy,
- [tex]h[/tex] is Planck's constant ([tex]6.626 \times 10^{-34} \, \text{Js}[/tex]),
- [tex]f[/tex] is the frequency.

Calculate the energy in joules (J).



Answer :

To find the energy of an orange lamp with a given frequency, we can use the formula derived from Planck's equation:

[tex]\[ E = h \cdot f \][/tex]

where:
- [tex]\( E \)[/tex] is the energy in joules (J),
- [tex]\( h \)[/tex] is Planck's constant, approximately [tex]\( 6.626 \times 10^{-34} \)[/tex] joules per second (J·s),
- [tex]\( f \)[/tex] is the frequency, given as [tex]\( 5.10 \times 10^{14} \)[/tex] hertz (Hz).

Now, let’s break down the solution step-by-step:

1. Identify the given frequency [tex]\( f \)[/tex]:
[tex]\[ f = 5.10 \times 10^{14} \, \text{Hz} \][/tex]

2. Find Planck's constant [tex]\( h \)[/tex]:
[tex]\[ h = 6.626 \times 10^{-34} \, \text{J·s} \][/tex]

3. Apply the formula [tex]\( E = h \cdot f \)[/tex]:
[tex]\[ E = (6.626 \times 10^{-34} \, \text{J·s}) \cdot (5.10 \times 10^{14} \, \text{Hz}) \][/tex]

4. Calculate the energy [tex]\( E \)[/tex]:
[tex]\[ E = 3.3792599999999997 \times 10^{-19} \, \text{J} \][/tex]

Thus, the energy of an orange lamp with a frequency of [tex]\( 5.10 \times 10^{14} \)[/tex] Hz is:

[tex]\[ E \approx 3.38 \times 10^{-19} \, \text{J} \][/tex]

This gives us a numerical solution for the energy, accurately representing the energy associated with the given frequency of the orange lamp.