What is the wavelength of a wave with a frequency of [tex]330 \, \text{Hz}[/tex] and a speed of [tex]343 \, \text{m/s}[/tex]?

A. [tex]8.8 \times 10^{-6} \, \text{m}[/tex]
B. [tex]1.04 \, \text{m}[/tex]
C. [tex]1.13 \times 10^5 \, \text{m}[/tex]
D. [tex]0.96 \, \text{m}[/tex]



Answer :

To find the wavelength of a wave given its frequency and speed, we use the formula:

[tex]\[ \text{wavelength} = \frac{\text{speed}}{\text{frequency}} \][/tex]

Here are the given values:
- Frequency ([tex]\( f \)[/tex]) = 330 Hz
- Speed ([tex]\( v \)[/tex]) = 343 m/s

Substitute the given values into the formula:

[tex]\[ \text{wavelength} = \frac{v}{f} = \frac{343 \, \text{m/s}}{330 \, \text{Hz}} \][/tex]

Upon performing the division, we obtain:

[tex]\[ \text{wavelength} = 1.0393939393939393 \, \text{m} \][/tex]

To match this computed wavelength to the provided answer choices, the closest option is:

[tex]\[ \text{Answer B: } 1.04 \, \text{m} \][/tex]

Thus, the wavelength of a wave with a frequency of 330 Hz and a speed of 343 m/s is approximately 1.04 meters.