To find the circumference of a circle, we use the formula:
[tex]\[ C = \pi \times d \][/tex]
where [tex]\( C \)[/tex] is the circumference and [tex]\( d \)[/tex] is the diameter of the circle.
Given:
- The diameter ([tex]\( d \)[/tex]) of the CD is 12 cm.
Let's plug the diameter into the formula:
[tex]\[ C = \pi \times 12 \][/tex]
Using the value of [tex]\(\pi \)[/tex] (approximately 3.14159), we can calculate:
[tex]\[ C = 3.14159 \times 12 \][/tex]
This multiplication gives the circumference:
[tex]\[ C \approx 37.69908 \][/tex]
To the nearest centimeter, we round this result:
[tex]\[ 37.69908 \approx 38 \][/tex]
Thus, the circumference of the CD, rounded to the nearest centimeter, is:
[tex]\[ \boxed{38 \text{ cm}} \][/tex]
So, the correct answer to the question is:
B. 38 cm