Harvey the wonder hamster can run [tex]$3 \frac{1}{6} \, \text{km}$[/tex] in [tex]$\frac{1}{4} \, \text{hour}$[/tex]. Harvey runs at a constant rate.

Find his average speed in kilometers per hour.
[tex]\boxed{\text{km per hour}}[/tex]



Answer :

To find Harvey the wonder hamster's average speed in kilometers per hour, we will follow these steps:

1. Convert the distance to an improper fraction:
Harvey runs a distance of [tex]\(3 \frac{1}{6}\)[/tex] kilometers. This can be written as an improper fraction. First, we convert the mixed fraction:

[tex]\[ 3 \frac{1}{6} = 3 + \frac{1}{6} \][/tex]

We can express the integer part 3 as a fraction with a denominator of 6:

[tex]\[ 3 = \frac{18}{6} \][/tex]

Now, add it to the fractional part:

[tex]\[ 3 + \frac{1}{6} = \frac{18}{6} + \frac{1}{6} = \frac{19}{6} \][/tex]

Therefore, the distance Harvey runs is [tex]\( \frac{19}{6} \)[/tex] kilometers.

2. Time given in hours:
The time taken is given as [tex]\( \frac{1}{4} \)[/tex] hour.

3. Calculate the average speed:
The formula for average speed is:

[tex]\[ \text{Average Speed} = \frac{\text{Distance}}{\text{Time}} \][/tex]

Using the values we have:

[tex]\[ \text{Average Speed} = \frac{\frac{19}{6} \text{ km}}{\frac{1}{4} \text{ hr}} \][/tex]

To divide by a fraction, we multiply by its reciprocal. The reciprocal of [tex]\( \frac{1}{4} \)[/tex] is 4:

[tex]\[ \text{Average Speed} = \frac{19}{6} \times 4 \][/tex]

Simplify the multiplication:

[tex]\[ \frac{19 \times 4}{6} = \frac{76}{6} = 12 \frac{4}{6} = 12 \frac{2}{3} \][/tex]

Finally, expressing [tex]\( 12 \frac{2}{3} \)[/tex] as a decimal:

[tex]\[ 12 \frac{2}{3} = 12.666666666666666 \][/tex]

Therefore, Harvey’s average speed is [tex]\( 12.666666666666666 \)[/tex] kilometers per hour.

[tex]\[ \boxed{12.666666666666666} \][/tex]