Answer :

Certainly! Let's solve the problem step by step.

Given the ratios:
[tex]\[ \frac{a}{b} = \frac{2}{5} \][/tex]
and
[tex]\[ \frac{b}{c} = \frac{3}{4} \][/tex]

1. Express [tex]\(a\)[/tex] in terms of [tex]\(b\)[/tex]:
[tex]\[ a = \frac{2}{5} b \][/tex]

2. Express [tex]\(c\)[/tex] in terms of [tex]\(b\)[/tex]:
[tex]\[ c = \frac{4}{3} b \][/tex]

3. Choose a common multiple to scale [tex]\(b\)[/tex] for consistent comparison:
We can use the least common multiple (LCM) of the denominators involved in the ratios. Here, the denominators are 5 and 4.

The LCM of 5 and 4 is 20.

4. Scale [tex]\(b\)[/tex] to the common multiple:
Let [tex]\(b\)[/tex] be scaled to the common multiple, which is 20.
[tex]\[ b = 20 \][/tex]

5. Calculate [tex]\(a\)[/tex] using the scaled [tex]\(b\)[/tex]:
[tex]\[ a = \frac{2}{5} \times 20 = 8.0 \][/tex]

6. Calculate [tex]\(c\)[/tex] using the scaled [tex]\(b\)[/tex]:
[tex]\[ c = \frac{3}{4} \times 20 = 26.666666666666664 \][/tex]

7. Write the final ratios:
The values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] are 8.0, 20, and 26.666666666666664 respectively. Hence, the ratio [tex]\(a : b : c\)[/tex] is:
[tex]\[ 8.0 : 20 : 26.666666666666664 \][/tex]

So, the ratio [tex]\(a : b : c\)[/tex] is [tex]\(8.0 : 20 : 26.666666666666664\)[/tex].