Which expression is equivalent to [tex]\left(\frac{4 m n}{m^{-2} n^6}\right)^{-2}[/tex]? Assume [tex]m \neq 0[/tex], [tex]n \neq 0[/tex].

A. [tex]\frac{n^6}{16 m^8}[/tex]
B. [tex]\frac{n^{10}}{16 m^6}[/tex]
C. [tex]\frac{n^{10}}{8 m^8}[/tex]
D. [tex]\frac{4 m^3}{n^8}[/tex]



Answer :

To solve the expression [tex]\(\left(\frac{4 m n}{m^{-2} n^6}\right)^{-2}\)[/tex], let's break it down step by step:

1. Simplify the inside of the expression:

[tex]\[ \frac{4 m n}{m^{-2} n^6} \][/tex]

We can rewrite the denominator by moving [tex]\(m^{-2}\)[/tex] to the numerator where it becomes [tex]\(m^{2}\)[/tex]:

[tex]\[ = \frac{4 m n \cdot m^2}{n^6} \][/tex]

Combine the powers of [tex]\(m\)[/tex] in the numerator:

[tex]\[ = \frac{4 m^{1 + 2} n}{n^6} \][/tex]

Simplify the powers:

[tex]\[ = \frac{4 m^3 n}{n^6} \][/tex]

Now, combine the powers of [tex]\(n\)[/tex] in the denominator:

[tex]\[ = 4 m^3 n^{1 - 6} \][/tex]

Simplify the powers:

[tex]\[ = 4 m^3 n^{-5} \][/tex]

2. Raise the entire expression to the power of -2:

[tex]\[ \left( 4 m^3 n^{-5} \right)^{-2} \][/tex]

When we raise a product to a power, we raise each factor to that power:

[tex]\[ = 4^{-2} (m^3)^{-2} (n^{-5})^{-2} \][/tex]

Calculate each term raised to -2:

[tex]\[ 4^{-2} = \frac{1}{16} \][/tex]
[tex]\[ (m^3)^{-2} = m^{-6} \quad \text{(since \((a^b)^c = a^{bc}\))} \][/tex]
[tex]\[ (n^{-5})^{-2} = n^{10} \quad \text{(since \((a^b)^c = a^{bc}\))} \][/tex]

Put these terms together:

[tex]\[ = \frac{1}{16} \cdot m^{-6} \cdot n^{10} \][/tex]

Combine them into a single fraction:

[tex]\[ = \frac{n^{10}}{16 m^6} \][/tex]

3. Conclusion:

The expression [tex]\(\left(\frac{4 m n}{m^{-2} n^6}\right)^{-2}\)[/tex] simplifies to [tex]\(\frac{n^{10}}{16 m^6}\)[/tex].

From the given options, the correct one is:
[tex]\[ \boxed{\frac{n^{10}}{16 m^6}} \][/tex]