A trait has two alleles, represented by [tex]$p$[/tex] and [tex]$q$[/tex]. If [tex]$p = 0.22$[/tex], what is [tex][tex]$q$[/tex][/tex]?

A. 0.88
B. 0.78
C. 0.22
D. 0.47



Answer :

To determine the value of [tex]\(q\)[/tex] when given [tex]\(p = 0.22\)[/tex], we use the principle that the sum of the frequencies of the two alleles for a given trait must equal 1. This is because the alleles [tex]\(p\)[/tex] and [tex]\(q\)[/tex] represent the complete set of options for that trait.

Here are the steps to solve the problem:

1. Understand the relationship between [tex]\(p\)[/tex] and [tex]\(q\)[/tex]:
- The sum of the frequencies of the two alleles must be 1.
[tex]\[ p + q = 1 \][/tex]

2. Given value:
- We know [tex]\(p = 0.22\)[/tex].

3. Set up the equation to solve for [tex]\(q\)[/tex]:
[tex]\[ 0.22 + q = 1 \][/tex]

4. Isolate [tex]\(q\)[/tex] by subtracting [tex]\(0.22\)[/tex] from both sides:
[tex]\[ q = 1 - 0.22 \][/tex]

5. Calculate the result:
[tex]\[ q = 0.78 \][/tex]

Thus, the value of [tex]\(q\)[/tex] is [tex]\(\boxed{0.78}\)[/tex].

By analyzing the given answer choices:
A. 0.88
B. 0.78
C. 0.22
D. 0.47

The correct answer is [tex]\( \text{B.} \quad 0.78\)[/tex].