Part B: The smoothie chain makes multiple [tex]$\$[/tex]0.15[tex]$ increases to the average prices of their smoothies. The table shows the average profit of the chain compared to the number of price increases. The data models a quadratic function.

\begin{tabular}{|l|l|}
\hline
Number of Price Increases $[/tex](x)[tex]$ & Profit (millions) $[/tex](y)$ \\
\hline
25 & 204 \\
\hline
60 & 285 \\
\hline
105 & 368 \\
\hline
132 & 384 \\
\hline
155 & 376 \\
\hline
172 & 356 \\
\hline
200 & 318 \\
\hline
254 & 185 \\
\hline
290 & 70 \\
\hline
\end{tabular}

Use the data in the table to answer questions 3-5.

3. Use technology or hand calculations to determine the equation for the quadratic function modeled by the data in the table. Show an image of your final answer. (10 points)

4. Using the equation from question 3, determine the maximum profit. (5 points)

5. Using the equation from question 3, determine how many price increases will cause the smoothie chain to have zero profit. (7 points)



Answer :

### Part B: Solving the Questions Step-by-Step

#### Question 3: Use technology or hand calculations to determine the equation for the quadratic function modeled by the data in the table.

Let's start with the given data points:

[tex]\[ \begin{array}{|c|c|} \hline \text{Number of Price Increases } (x) & \text{Profit (millions) } (y) \\ \hline 25 & 204 \\ 60 & 285 \\ 105 & 368 \\ 132 & 384 \\ 155 & 376 \\ 172 & 356 \\ 200 & 318 \\ 254 & 185 \\ 290 & 70 \\ \hline \end{array} \][/tex]

We find a quadratic function of the form [tex]\( y = ax^2 + bx + c \)[/tex]. After fitting the quadratic model to the data points using regression analysis, we get the equation:

[tex]\[ y = 117.91363072818619 + 3.742764671615785x - 0.013564595957476968x^2 \][/tex]

or more neatly:

[tex]\[ y = 117.91 + 3.74x - 0.0136x^2 \][/tex]

This is the quadratic equation fitting the given data.

#### Question 4: Using the equation from question 3, determine the maximum profit.

For a quadratic function [tex]\(y = ax^2 + bx + c\)[/tex], the vertex of the parabola, which corresponds to the maximum (or minimum) value, occurs at [tex]\(x = -\frac{b}{2a}\)[/tex].

In our equation:
[tex]\[ y = 117.91363072818619 + 3.742764671615785x - 0.013564595957476968x^2 \][/tex]

Here, [tex]\(a = -0.013564595957476968\)[/tex], [tex]\(b = 3.742764671615785\)[/tex].

To find the [tex]\(x\)[/tex]-coordinate of the vertex:

[tex]\[ x = -\frac{b}{2a} = -\frac{3.742764671615785}{2 \times -0.013564595957476968} \approx 137.96078716051724 \][/tex]

Substitute [tex]\( x = 137.96078716051724 \)[/tex] back into the quadratic equation to find the maximum profit [tex]\( y \)[/tex]:

[tex]\[ y = 117.91363072818619 + 3.742764671615785 \times 137.96078716051724 - 0.013564595957476968 \times (137.96078716051724)^2 \approx 376.09101085453045 \][/tex]

Thus, the maximum profit is approximately [tex]\(\$376.09 \)[/tex] million.

#### Question 5: Using the equation from question 3, determine how many price increases will cause the smoothie chain to have zero profit.

To find the number of price increases that result in zero profit, we need to solve the quadratic equation [tex]\( y = 0 \)[/tex]:

[tex]\[ 0 = 117.91363072818619 + 3.742764671615785x - 0.013564595957476968x^2 \][/tex]

This simplifies to:

[tex]\[ -0.013564595957476968x^2 + 3.742764671615785x + 117.91363072818619 = 0 \][/tex]

Using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:

[tex]\[ a = -0.013564595957476968, \quad b = 3.742764671615785, \quad c = 117.91363072818619 \][/tex]

[tex]\[ x = \frac{-3.742764671615785 \pm \sqrt{(3.742764671615785)^2 - 4 \times (-0.013564595957476968) \times 117.91363072818619}}{2 \times -0.013564595957476968} \][/tex]

Calculate the discriminant:

[tex]\[ \Delta = (3.742764671615785)^2 - 4 \times (-0.013564595957476968) \times 117.91363072818619 \approx 137.29120756665236 \][/tex]

Thus:

[tex]\[ x = \frac{-3.742764671615785 \pm \sqrt{137.29120756665236}}{2 \times -0.013564595957476968} \][/tex]

Solving this, we get the two solutions:

[tex]\[ x \approx -28.5502575156461 \quad \text{and} \quad x \approx 304.471831836680 \][/tex]

Therefore, the number of price increases that will result in zero profit are approximately:

[tex]\[ x \approx -28.55 \quad \text{and} \quad x \approx 304.47 \][/tex]

Since a negative number of price increases doesn't make sense in this context, we take the positive solution:

[tex]\[ 304.47 \][/tex]

So, approximately 304.47 price increases will result in zero profit.